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We show that in deeply supercooled liquids, structural relaxation proceeds via the accumulation of
Eshelby events, i.e. local rearrangements that create long-ranged and anisotropic stresses in the surrounding
medium. Such events must be characterized using tensorial observables and we construct an analytical
framework to probe their correlations using local stress data. By analyzing numerical simulations, we then
demonstrate that events are power-law correlated in space, with a time-dependent amplitude which peaks
at the alpha relaxation time τα. This effect, which becomes stronger near the glass transition, results from
the increasingly important role of local stress fluctuations in facilitating relaxation events. Our finding
precludes the existence of any length scale beyond which the relaxation process decorrelates.
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For two decades, the main approach to structural
relaxation has focused on “mobility heterogeneities,” i.e.,
regions of space where atoms undergo large displacements
over some time window [1–10]. These heterogeneities are
probed using scalar moments of the displacement field,
which systematically decorrelate exponentially in space. It
has thus become customary to expect that the relaxation
process also does. But the precise relation between these
observables and the actual relaxation mechanisms has
never been clarified. It hence remains necessary to first
identify the elementary processes governing relaxation
before constructing tailored observables that can probe
and correlate their occurrence in distant regions of space.
We here follow this route by elaborating upon the idea that
highly viscous liquids are “solids which flow” [11–14], a
notion which motivates various attempts to relate relaxation
to stress or elastic properties [15–24].
In deep supercooling, relaxation proceeds via a series of

activated hops between inherent structures (or ISs), i.e.,
local minima of the potential energy surface [25–27]. Each
IS is by definition a mechanically stable configuration,
that is, an elastic solid, and the ensemble of ISs explored
by an equilibrated liquid constitutes the glassy state where
it is trapped if suddenly quenched at low temperature.
Accordingly, the relaxation of a supercooled liquid results
from the accumulation of activated transitions between
configurations of the corresponding (underlying) glass.
Now, elasticity theory [28,29] asserts that any localized
irreversible event occurring in a solid creates so-called
Eshelby stresses, which have no characteristic length scale
(decay as power laws) and are anisotropic [12,30]. These
fields are clearly documented in sheared glasses [31–34],
and evidence was found recently for their presence in
sheared liquids [35].
Here, using a 2D numerical model of a quiescent

supercooled liquid, we show that relaxation results from

the accumulation of Eshelby events, i.e., local rearrange-
ments which give rise to elastic strains in the embedding
medium. We propose to characterize events by their elastic
dipoles, a tensorial quantity, which accounts for the local
shape change in a rearrangement, and fully determines the
long-ranged Eshelby stress field. We construct an analytical
framework to relate the density of dipoles accumulated over
a given time window, to the increment of local IS stress.
By systematically analyzing the correlation matrix of stress
increments we then demonstrate that events are power-law
correlated in space, with a time-dependent amplitude.
Simulations are performed using the same 2D binary

Lennard-Jones (LJ) model as in [32–36]. All quantities are
given in reduced LJ units. The simulation cell is square, of
size L × L, and biperiodic, with Bravais axes x and y. All
data points are obtained in equilibrium for each temperature
T; ISs are computed at regular times.
Coarse-grained stress fields σαβðr; tÞ are computed in

ISs [36,37]. In two dimensions, stress has three indepen-
dent components, which we decompose as pressure
σ1 ≡ − 1

2
ðσxx þ σyyÞ, normal σ2 ≡ 1

2
ðσxx − σyyÞ, and shear

stress σ3 ≡ σxy. These fields are plotted on Fig. 1, for an
L ¼ 80 system equilibrated at T ¼ 0.26, a temperature at
which τα ≈ 104 [36]. σ1 is isotropic, but strikingly both σ2
and σ3 are anisotropic. This is quite unexpected but

FIG. 1 (color online). In an ISofanL ¼ 80 systemequilibratedat
T ¼ 0.26. (a) Pressure, σ1 (b) σ2 ≡ 1

2
ðσxx − σyyÞ, and (c) σ3 ¼ σxy.
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perfectly consistent with the structural isotropy of our
system, which requires pressure to be isotropic, but only
demands σ2 (which is the shear stress in a frame rotated by
π=4 from the x, y axes) to be statistically equivalent to σ3 up
to a π=4 rotation. These anisotropies will be explained only
at the end of our discussion.
From the same system, we pick two ISs separated by a

time interval t ¼ 100 ≪ τα ≈ 104 and image on Fig. 2 their
local differences. On the map [Fig. 2(a)] of the local shear
stress increment δσ3ðr;t0;t0þ tÞ¼σ3ðr;t0þ tÞ−σ3ðr;t0Þ
relaxation events show up as conspicuous color spots,
corresponding to large and random stress changes. In the
displacement field [Fig. 2(b)] fuig, with i the particle index
(only the upper left quarter of the system is shown),
jumbles of large arrows reveal a few localized events
connected by swirls of small, smoothly varying, displace-
ments. Since the distance between events is rather large—
ten to twenty particles—these swirls are quite long ranged
and, hence, suggest that the amorphous matrix is respond-
ing elastically.
In the linear approximation about the t0 þ t IS, the

displacement field fuig can be viewed as the elastic
response to the forces f

i
¼ P

jHij
· uj, with H

ij
the

Hessian [38]. As shown on Fig. 2(c), ff
i
g is strongly

localized on relaxation centers: the broad areas where it
vanishes hence respond linear elastically. This now con-
firms that the swirls of fuig are due to elastic strains, and,
consequently, that events are of Eshelby type [28]: each one
corresponds to a change of inherent configuration for a
small group of atoms embedded in the amorphous struc-
ture; when it occurs, the core atoms must find mechanical
equilibrium with the embedding medium: that is why the
latter must elastically deform.
It appears from the above construction that the strains

generated by events are equivalent to the elastic response to
a localized force field. Now, the perturbations created in
an amorphous structure by pointlike forces match at long
range the prediction of continuum elasticity [39]. And
elasticity theory asserts [29,30] that the incremental stress
generated by a group of forces applied at points ri localized
around the origin of an isotropic elastic continuum does not
depend, in the far field, on all microscopic details of these
forces, but on the associated “dipole”

P
ifiri. We thus

characterize an event occurring around re by the dipole
density ρe ¼ −δðr − reÞ

P
ifiri: with this sign convention,

the stress “released” is 1
L2

R
ρe [30].

In [36], we evaluate the total stress change δσ due to an
event occurring at the origin of a 2D isotropic elastic
medium. Our calculation is fully tensorial and yields, in
Fourier space (with ^ marking the Fourier transforms), a
relation of the form δσ̂ ¼ Ê · ρ̂e with Ê a fourth order Green

tensor. Using the vector notation σ ≡ ½σ1; σ2; σ3� for sym-

metric tensors, Ê writes as the matrix

0
B@

AE αE cosð2ϕÞ αE sinð2ϕÞ
βE cosð2ϕÞ BE þ γE cosð4ϕÞ γE sinð4ϕÞ
βE sinð2ϕÞ γE sinð4ϕÞ BE − γE cosð4ϕÞ

1
CA;

ð1Þ
with ϕ the azimuth of the wave vector k. AE, BE, αE, βE, γE
are > 0 constants. Each element of ÊðkÞ relates a compo-
nent of the source density ρ̂ek to one of the incremental stress
δσ̂l. In real space, EðrÞ is a matrix of scalar Green
functions. The constants AE and BE correspond to δðrÞ
terms accounting for core stress changes. The functions
cosð2nϕÞ and sinð2nϕÞ are the Fourier transforms of
ðð−1Þnjnj=πr2Þ cosð2nθÞ and ðð−1Þnjnj=πr2Þ sinð2nθÞ,
respectively. The corresponding elements of EðrÞ thus
decay as 1=r2, albeit with various angular dependencies.
As an example, a shear stress releasing event ρ̂e ¼ ½0; 0; ρ3�
with ρ3 < 0, induces a core shear stress drop Bρ3δðrÞ < 0,
and creates far-field shifts in the three stress components:
δσ3 ¼ −ð2γEρ3=πr2Þ cosð4θÞ as found in [30], but also
δσ1¼−ðβEρ3=πr2Þsinð2θÞ and δσ2¼ð2γEρ3=πr2Þsinð4θÞ.
AE and BE are unknown, because our continuum

calculation cannot account for the small scale discreteness
[36]. The far-field contributions are set by elasticity:
αE¼ð1þνÞ=2; βE¼1−αE; γE¼αE=2, with ν¼λ=ð2μþλÞ
the 2D Poisson ratio, and λ, μ the Lamé constants.
In the following, relaxation will be probed using mea-

surements of the correlation matrix of stress increments:
Cijðr; tÞ≡ hδσiðr0; t0; t0 þ tÞδσjðr0 þ r; t0; t0 þ tÞi. Within
our framework, the stress change accumulated over an
arbitrary time interval verifies δσ̂ðk;t0;t0þ tÞ¼ ÊðkÞ·
ρ̂ðk;t0;t0þ tÞ, where ρðr; t0; t0 þ tÞ ¼ P

eρ
eðrÞ adds up

the contributions of all events occurring between t0
and t0 þ t. Thus, in Fourier space: Ĉij ¼ hδσ̂�i δσ̂ji ¼
Ê�
ikÊjlhρ̂�kρ̂li (with � the complex conjugate) and, since

Ê is real,

Ĉ ¼ Ê · Ŝ · ÊT; ð2Þ

with T the transpose and Ŝ ¼ hρ̂�ρ̂i the autocorrelation

matrix of the source field.

FIG. 2 (color online). For L ¼ 80, T ¼ 0.26, t ¼ 100.
(a) δσ3ðr; t0; t0 þ tÞ, (b),(c) the associated displacement and force
fields, respectively, in the upper-left quarter of the cell (see x; y
coordinates).
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Typical data for C13ðr; tÞ, C23ðr; tÞ, and C33ðr; tÞ are
presented as 2D plots [Fig. 3] and cuts [Fig. 4(a)], for T ¼
0.26 and t ¼ 100. Quite remarkably, they present exactly
the r−2 scaling forms of the corresponding element of (1)
[last column]: C13 ∝ − sinð2θÞ=r2, C23 ∝ sinð4θÞ=r2, and
C33 ∝ − cosð4θÞ=r2. To quantify whether Ĉ is precisely of
the form (1), we define

Xij
n ðr; tÞ ¼ −

1

2π2
r2

r2c

Z
2π

0

dθ
Cijðr; tÞ
C33ð0; tÞ

cosðnθÞ; ð3Þ

and, likewise, Yij
n with sinðnθÞ under the integral (rc ¼ 1 is

the coarse-graining length). All these quantities are nor-
malized by C33ð0; tÞ: this choice is of no consequence since
C22ð0; tÞ ¼ C33ð0; tÞ (by isotropy) and, as seen on Fig. 4(b),
C11ð0; tÞ≃ 2C33ð0; tÞ at all times.

Y13
2 and X33

4 , respectively, probe the −sinð2θÞ=r2 form of
C13 and the − cosð4θÞ=r2 form of C33. They are plotted vs r
on Fig. 4(c), for T ¼ 0.26, t ¼ 100, and increasing Ls.
Beyond distances≃L=4, X33

4 rises conspicuously while Y13
2

drops. This is a finite size effect, which arises because, in
size-L systems, Cij adds up all periodic image correlations
[40]. With increasing L each set of curves develops a
plateau; hence, the ∝ 1=r2 scalings hold at long range in the
L → ∞ limit.
Using Xij

n and Yij
n we have systematically tested the

presence, in every CijðtÞ, of all cosðnθÞ=r2 and
sinðnθÞ=r2 contributions up to n ¼ 8 and for t ranging
from 0.1 to 106 ≫ τα. We thus establish that Ĉ presents
the terms expected for the Eshelby Green function, and
them only: it is of the form (1) with > 0 coefficients at
all times.
It is quite remarkable that the stress increment correlation

function C presents the exact scaling form of the Eshelby
Green function E. How can it be so?
To interpret this observation, let us denote M the five-

parameter family of matrices of the form (1). The key to the
following discussion is that M is a matrix algebra: it is
invariant by addition, multiplication, transpose and by
inversion for invertible matrices.
For very short time windows (t≲ 0.1), less than one

event is present in our system, on average: Ŝ is thus
diagonal and since hρ22i ¼ hρ23i by isotropy, it is an M
matrix. If Ê is anM matrix, as we anticipate, then by virtue
of Eq. (2), Ĉ must also present the form (1). Our short time
C data [Fig. 4(d)] are direct evidence that such is indeed the
case, and thereby demonstrate that events do create Eshelby
fields. Meanwhile they fix AE and BE [36].
At finite times, events must correlate, otherwise stress

fluctuations would grow unboundedly. Since Ê is known
from short time data, the correlations between Eshelby
sources can be accessed by deconvolution:
Ŝ ¼ Ê−1 · Ĉ · ðÊTÞ−1. Since both Ê−1 and ðÊTÞ−1 are M
matrices, our observation that Ĉ is an M matrix at all times
now proves that Ŝ is a product of M matrices, and, hence,
that it is always of the form (1). We thus establish that the
correlations between sources are power-law scaling in
space with the same radial and angular dependencies as
the Eshelby-Green tensor E.
To implement this deconvolution and access the corre-

lations between events, we need to characterize more
precisely the time dependence of Ĉ. Its coefficients are
denoted AC, BC, αC, βC (¼αC by symmetry), γC. We saw in
Fig. 4(b) that ACðtÞ≡ C11ð0; tÞ and BCðtÞ≡ C33ð0; tÞ ¼
C22ð0; tÞ verify ACðtÞ≃ 2BCðtÞ for all t. We also report, in
Fig. 4(d), Y13

2 and X33
4 data at increasing t: their plateaus

grow over the considered time range, and hence the weight
of power-law correlations respective to stress fluctuations.
Both plateaus, however, collapse at all times: after Fourier

FIG. 3 (color online). For L ¼ 160, T ¼ 0.26, t ¼ 100. 2D
plots of (a) C13ðr; tÞ, (b) C23ðr; tÞ, and (c) C33ðr; tÞ.
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FIG. 4 (color online). Temperature T ¼ 0.26. (a) At t ¼ 100
cuts of C13, C22, and C33 along appropriate axes; the dashed
line has slope −2. (b) C11ð0; tÞ, C33ð0; tÞ, and their ratio vs t.
(c) At t ¼ 100, Y13

2 ðr; tÞ (red) and X33
4 ðr; tÞ (black) vs r, for

increasing Ls. (d) Y13
2 (dashed) and X33

4 (full lines) vs r at
increasing times up to τα.
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transforming, it entails γCðtÞ=αCðtÞ≃ 1=2. To sum up, we
observe, at all times

ACðtÞ=BCðtÞ≃ 2 and γCðtÞ=αCðtÞ≃ 1=2: ð4Þ

Hence, Ĉ explores a two-parameters family of matrices of
the form (1), with ACðtÞ≃ 2BCðtÞ characterizing stress
fluctuations, and αCðtÞ≃ 2γCðtÞ the power laws.
The properties (4) introduce two constraints on the

coefficients of Ŝ: AS, BS, αS , βS (¼ αS), and γS . Using
(2) and (4), it appears that the ratios AS=BS and αS=γS are t
independent. Hence, like Ĉ, the source correlation matrix Ŝ
explores a two-parameter subset of M, with AS character-
izing the fluctuations of the dipole density and αS the
amplitude of the correlation between events. Moreover, the
ratios κC ≡ αC=AC and κS ≡ αS=AS are related by [36]:

κC ¼
κSaþ b
κScþ d

or κS ¼ b − κCd
κCc − a

; ð5Þ

where the constants a, b, c, and d are combinations of the
coefficients of Ê [36]. κC and κS characterize the relative
amplitude of power law correlations in Ĉ and Ŝ. Since all
other features of the correlation matrices Ĉ and Ŝ are set by
(4), Eq. (5) and its inverse fully specify the relation between
stress increment and source correlations.
Our normalization of (3) was so chosen that κC≃ the

height of the X33
4 plateau, which is reported in Fig. 5 vs t for

different T’s. κS is then inferred using (5). It is very clear
that the amplitude of power-law correlation grows at early
times, peaks, and later recedes. Filled symbols are added at
the time ταðTÞ, measured using macroscopic stress relax-
ation [19,36], to show that it corresponds approximately to
the peak time.
Let us now come back to the anisotropies evidenced in

the stress field on Fig. 1. At long time, Cijðr; t → ∞Þ ¼
2hσiðr0 þ r; t0Þσjðr0; t0Þi: this equation results only from

stationarity and from the existence of a finite memory time
τα; hence, it expresses that the equilibrium stress is
stationary. To test it, we have systematically analyzed
the autocorrelation matrix hσiσji of the stress field and
found that it indeed presents the very same features as C:
not only are σ2 and σ3 anisotropic [see Fig. 1] but cross-
correlations are present in the IS stress exactly as described
in Eq. (1). Moreover, the X33

4 plot for hσiσji provides
t → ∞ values for κC, which are reported near the right edge
of Fig. 5 and match quite well its t ¼ 0 value. This is
expected because ρ must become spatially uncorrelated at

long times, hence Ŝ diagonal. The IS local stress is thus
statistically equivalent to the stress generated by a space-
filling set of spatially and tensorially uncorrelated sources
and captures the Eshelby signature.
How can we explain the initial growth and later decay

of power-law correlations? At any arbitrary initial time t0,
and some point r, the local stress deviates by
Δσðr; t0Þ ¼ σðr; t0Þ − hσi from its mean. Relaxation must
drive back any initial deviation of the local stress towards
the mean, otherwise stress fluctuations would grow
unboundedly. This entails that at any point r, the events
that oppose the initial Δσðr; t0Þ are slightly favored at
future times (t0 þ t > t0). Events thus anticorrelate with the
t0 stress pattern, which is power law correlated. We reason
that events thereby acquire power law correlations of
growing amplitude at small t; these correlations recede
as the memory of the t0 pattern is gradually erased. This
mechanism self-consistently defines a peak time which is
≃ τα; it thus appears to control structural relaxation. The
peak amplitude, moreover, grows with decreasing T,
showing that stress biases play an increasingly important
role in the relaxation process near the glass transition.
The picture we propose for supercooled-liquid relaxation

is finally that (i) it proceeds via the accumulation of
Eshelby events with random core dipole tensors, (ii) the
equilibrium IS stress accumulates these fluctuations over
times ≫ τα and thus presents the same power-law corre-
lations as the Eshelby-Green function, and (iii) the events
that eventually erase an initial stress pattern are biased by it
and thus transiently develop power-law correlations. There
is nothing specific about two dimensions in our argument
and we are thus confident that it should carry over to three
dimensions.
It is noteworthy that the long-range correlations between

relaxation events evidenced here were not captured in
studies of so-called “dynamical heterogeneities” [41]. In
retrospect, this term appears quite ambiguous: it purports to
refer to (a) the relaxation events, but was really used for
(b) mobility heterogeneities. The relation between (b) and
(a), however, was never clarified, and we now see that
mobility-based observables miss long-ranged correlations,
and, hence, cannot be considered as characterizing relax-
ation events. These prior works, moreover, concluded that
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the relaxation process decorrelates exponentially because
all the considered observables did. But if this were true,
all observables should decorrelate at least exponentially,
which is ruled out by the presence of power-law correla-
tions between Eshelby sources. Our observation thus
invalidates the existence of a characteristic length scale
beyond which the relaxation process decorrelates, and as a
corollary, any analogy between the glass transition and
critical phenomena.

The author is indebted to Christiane Caroli for her
critical readings and insightful comments at key stages
of this work.
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