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We analyze, using inhomogeneous mode-coupling theory, the critical scaling behavior of the dynamical
susceptibility at a distance ϵ from continuous second-order glass transitions. We find that the dynamical
correlation length ξ behaves generically as ϵ−1=3 and that the upper critical dimension is equal to six. More
surprisingly, we find that ξ grows with time as ln2t exactly at criticality. All of these results suggest a deep
analogy between the glassy behavior of attractive colloids or randomly pinned supercooled liquids and that
of the random field Ising model.
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Several recent studies have revealed that the properties of
the glass transition can be drastically modified by suitably
tuning some control parameters. In the case of the colloidal
glass transition, an attractive interaction on top of the hard-
sphere repulsion can change the dynamical behavior and
lead to glass-glass transitions and logarithmic relaxation
[1]. This behavior is also expected for glassy liquids in
porous media [2]. For generic glass-forming liquids, it was
recently predicted [3,4] that randomly pinning a fraction of
particles would transmute the glass transition in a continu-
ous second-order phase transition akin to that of the random
field Ising model (RFIM) [3–5] (for a review of the RFIM
and its critical properties, see Refs. [6,7]). There are strong
theoretical indications that these phenomena are in fact all
related to the existence of a new kind of glassy critical
point, first found within mode-coupling theory (MCT) as a
higher-order singularity [8]. The physical contexts in which
it appears are quite different: for attractive colloids it is a
terminal point of a glass-glass transition line, for glass-
forming liquids either pinned or trapped in porous media it
corresponds to the locus where the mode-coupling tran-
sition and the ideal glass transition lines merge. In the
former case the glass transition line stops at this new critical
point [1,3], whereas in the latter it carries on and becomes
continuous [2]. In all of these physical situations, localized
particle rearrangements not described by MCTare expected
to be of greatly diminished importance. In particular, for
attractive colloids such processes are suppressed by the
formation of strong short-ranged bonds that push the
system into an attractive glass phase [8], while in the case
of pinned systems the temperature at which an entropy

crisis occurs is expected to merge with the critical temper-
ature of MCT [3], which implies that the region where
MCT fails to describe glassy dynamics shrinks to zero.
Hence, MCT might become quantitatively accurate in these
situations. The dynamical behavior of the two-point func-
tions at this new glassy critical point, that we will call A3
using Götze’s terminology, was predicted by MCT com-
putations [8] and confirmed later both numerically and
experimentally in colloids [1]. The static properties of the
fluctuations of the overlap field between two equilibrium
configurations were recently investigated in Refs. [3,5] and,
using simulations, in Ref. [9]. A complete theory of
dynamical correlations is, however, still lacking. The aim
of this Letter is to develop such a theory by extending the
“inhomogeneous” MCT (IMCT) formalism, which was
developed by some of us [10] to describe dynamical
heterogeneities at the usual MCT transition. We shall
obtain the mean-field values of the critical exponents,
the upper critical dimension, and derive the critical behav-
ior, which turns out to be very different from the usual one.
We find, in particular, that dynamical length scales grow
logarithmically with time, which strongly bolsters the
relationship with the RFIM [3,5].
In order to grasp the main properties of the A3 critical

point, it is useful to focus on the mean-field Landau-like
potential Vðf; εÞ, called the Franz-Parisi (FP) potential in
the present context [11]. The arguments ε and f are,
respectively, the vector of all control parameters that can
be tuned (e.g., the temperature, the range of attraction
between particles, and the fraction of pinned particles) and
the glassy (nonergodic) order parameter, which measures
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how far the dynamics can displace the system away from its
initial configuration. For usual glass transitions, the FP
potential has a unique minimum f0 ¼ 0 at high temper-
atures; it corresponds to a complete loss of memory of the
initial condition as normal in a liquid. A secondary
minimum appears for f ¼ f� > 0 below a certain transition
temperature Tc, see Fig. 1. An important achievement of
the last decades was to establish that Tc actually coincides
with the MCT transition, where locally stable, long-lived
amorphous structures, corresponding to the secondary
minimum of Vðf; εÞ, appear. Roughly speaking, the con-
nection between the FP potential and MCT may be
expressed as V 0ðf; εÞ ¼ ðf=1 − fÞ − F ε½f�, where F ε½f�
is the memory function of the MCT equations [12]. (The
full-fledged MCT calculation deals with wave-vector
dependent order parameters f~q, we will return to this
below.) An A3 critical point corresponds to the merging
of the minima f0 and f� [13,14]. It is of codimension 2,
much as the liquid-gas critical point; i.e., one needs to tune
at least two control parameters to reach it, as found for
systems with quenched pinning sites and for hard sphere
systems, where one tunes the short-range attractive inter-
actions and the density, see inset of Fig. 1.
Technically, the existence of an underlying thermody-

namical formulation has been extremely useful to under-
stand that the MCT transition is necessarily accompanied
by the divergence of a length scale, which governs the
spatial extent over which dynamical fluctuations are
correlated, a feature that was hard to anticipate within
the original framework of Götze et al. This diverging length
scale is in fact a direct consequence of the vanishing of the
curvature V″ðf�; εÞ of the FP potential at Tc (see Fig. 1)
[15–17]. The IMCT formalism allowed us to make a series
of precise predictions about the space-time scaling of
dynamical heterogeneities in supercooled liquids close to
Tc [10]. One finds in particular that the dynamical
correlation length diverges as jT − Tcj−1=4 as the critical

point is approached. Although the IMCT predictions are
only expected to be correct far enough from Tc below 8
dimensions, many general predictions appear to be con-
firmed, sometimes quantitatively, by large scale computer
simulations, see Ref. [18] and references therein. These
developments, and others, strongly support a quantitative
theory of supercooled liquids built using the mean-field
scenario as a starting point, much as Curie-Weiss theory
provides a foundation for the modern theory of critical
phenomena [19,20].
In the following we first explain our results in an

informal and simple way based on the behavior of the
FP potential; we then sketch the complete IMCT derivation.
We will denote as VðnÞ the nth derivative of Vðf; εÞ with
respect to f (V 0 ¼ Vð1Þ, etc.), and ~∇εV the gradient of V
with respect to the parameters. The expansion of V 0ðf; εÞ
around the transition point f ¼ fc, ~ε ¼ 0 reads, with
δf ¼ f − fc:

V 0ðf; εÞ ≈ Vð2Þ
c δf þ 1

2
Vð3Þ
c δf2 þ 1

3
Vð4Þ
c δf3

þ ~∇εV 0
c · ~εþ ~∇εV

ð2Þ
c · ~εδf þ…;

where we have used that by definition, at the transition,
V 0ðfc; 0Þ≡ 0. The standard MCT transition (the A2 critical
point) occurs when the secondary minimum of VðfÞ just
appears, implying Vð2Þ

c ¼ 0 (see Fig. 1). The next order

singularity (A3) occurs when Vð3Þ
c concomitantly vanishes

as well (see Fig. 1). Looking for the new location f� of the
minimum away from the transition, one finds, to leading
order in ϵ ¼ j~εj: f� − fc ∼

ffiffiffi
ϵ

p
, as is familiar for the A2 case

and f� − fc ∼
ffiffiffi
ϵ3

p
in the generic A3 case. There is,

however, a subtlety here: since the A3 point requires at
least two parameters to be varied simultaneously, one needs
to include the case where the chosen trajectory in parameter

space is precisely perpendicular to ~∇εV 0
c, in which case one

finds again the weaker singularity f� − fc ∼
ffiffiffiffiffi
ϵ∥

p , where ϵ∥
is the distance to the critical point along that special
direction. The motivation for the notation ϵ∥ stems from
the liquid-glass phase diagram, sketched in the inset of
Fig. 1 in the case of random pinning glass transitions [3]. In
general, A3 is the terminal point of the line of A2 critical
points. The special direction found above is the one tangent
to the A2 line. In consequence, we also introduce the
notation ϵ⊥ for the magnitude of the component of ~ε

perpendicular to the A2 line (i.e., parallel to ~∇εV 0
c).

The main idea of IMCT [10] is to perturb the system with
a small spatially periodic external potential ∝ cosð~q0 · ~xÞ,
whose spatial profile varies over the length scale 1=q0. The
characteristic value of q�0 at which the external perturbation
starts to act differently from a uniform, q0 ¼ 0, perturbation
allows one to obtain the correlation length of dynamical
heterogeneities as ξ ¼ 1=q�0. Since all the physics of the

T > Tc

A3 critical point
A2 critical point

||

⊥

T

c

f

T < Tc

V
(

)

FIG. 1. Schematic presentation of the FP potential. The second
minimum that develops below the transition point becomes flat
as the usual MCT (A2) transition point is approached from
below. The two minima coalesce into one at the A3 point. Inset:
Schematic phase diagram obtained for random pinning glass
transitions. In the temperature (T)-pinning fraction (c) plane the
MCT transition line ends in an A3 critical point [3]. The two
special directions mentioned in the text are shown.
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slowing down is governed by the vanishing of the curvature
of the FP potential, the crucial point is to work out how the
periodic perturbation (of zero mean) changes this curvature.
Because the system is rotationally invariant, it is reasonable
to assume that the extra contribution to the curvature is∼q20.
Therefore, one has

V 00ðf�; εÞ ≈ Vð3Þ
c ðf� − fcÞ þ

1

2
Vð4Þ
c ðf� − fcÞ2 þ ~∇εV

ð2Þ
c · ~ε

þ Γq20:

Close to an A2 critical point, Vð3Þ
c ≠ 0 and f� − fc ∼

ffiffiffi
ϵ

p
,

which shows that the characteristic value of q0 beyond
which the relaxation time substantially changes is ∼ϵ1=4,
leading to ξ ∼ ϵ−1=4, in agreement with the result of
Ref. [10]. Upon approaching an A3 critical point,

Vð3Þ
c ¼ 0, leading to ξ ∼ ϵ−1=3⊥ in the generic case, and to

ξ ∼ ϵ−1=2∥ in the special case where ϵ⊥ ¼ 0. These results
are fully confirmed, and made more precise, by the IMCT
analysis that we now briefly present.
The IMCT formalism starts from an exact equation for

the inhomogeneous dynamic structure factor Fðq1;q2; tÞ ¼
hρq1

ðtÞρ−q2
ð0Þi in the presence of an inhomogeneous

external field uðq0Þ:
∂Fðq1;q2; tÞ

∂t þ Ωq1Fðq1;q2; tÞ þ
X
k

Z
t

0

Mðq1;k; t − t0Þ

∂Fðk;q2; t0Þ
∂t0 dt0 ¼ T uðq1;q2; tÞ; ð1Þ

where Ωq1 ≡ q21kBT=Sq1 is a frequency term, Mðq1;k; tÞ
is the memory kernel and T uðq1;q2; tÞ contains all the
terms generated due to the external potential. The
dynamical susceptibility is defined as χq0ðq1; tÞ ¼
δFðq1;q1 þ q0; tÞ=δuðq0Þju→0. This object obeys a linear
equation (that we do not write here, see Ref. [10]) obtained
by taking the derivative of Eq. (1) with respect to uðq0Þ. In
the long-time limit, this linear equation reads

X
k

ðδk;q − Cq;kðq0ÞÞχq0ðk; t → ∞Þ ¼ Sðq;q0Þ; ð2Þ

where Sðq;q0Þ is a nonsingular source term and Cq;kðq0Þ is
a q0 dependent matrix that can be fully computed in terms
of the memory kernel of the model, see Ref. [10]. Note that
χq0ðk; t → ∞Þ is nothing else than the variation of the
nonergodic parameter fk ¼ Fðk; t → ∞Þ due to the exter-
nal potential. In order to analyze Eq. (2) we recall (see
Ref. [13]) that Cq;kð0Þ ¼ ð1 − fkÞ2∂F q;ε½ffkg�=∂fk. The
properties of the operator δk;q − Cq;kð0Þ, which is akin to
V 0ðf; εÞ, are reported in Ref. [13]: at distance ϵ from the
transition, one finds fk ¼ fck þ ð1 − fckÞ2gk, where gk ∝ffiffiffi
ϵ3

p
ψR
k and ψR

k is the (right) zero mode of I − Ĉð0Þ evaluated
at the transition point. This scaling holds when approaching

the A3 critical point in any direction other than the one
parallel to the line of usual A2 transitions that approach the
A3 point. In this case one finds gk ∝

ffiffiffi
ϵ

p
ψR
k. Away from

criticality, the smallest eigenvalue of the matrix I − Ĉð0Þ is
not exactly zero: the deviations are of order, respectively,
ϵ2=3⊥ and ϵ∥ close to an A3 point, depending on the direction
of approach to criticality. Coming back to our original
problem, we remark that the eigenvalues of Cq;kðq0Þ can be
computed using perturbation theory. Because of rotational
invariance, one finds that all eigenvalues of Cq;kð0Þ are
shifted by an amount ∝ q20. The smallest eigenvalue of
I − Ĉðq0Þ is therefore equal to αjϵ⊥j2=3 þ Γq20, where α and
Γ are numbers, and ϵ⊥ ≠ 0. The solution of Eq. (2) will be
dominated by this very small eigenvalue, and thus reads

χq0ðk; t → ∞Þ ≈ hψLjSiψR
k

αjϵ⊥j2=3 þ Γq20
; ð3Þ

where ψL;R are the left and right largest eigenvectors of
Cq;k at criticality. From this expression, one directly
demonstrates the existence of a diverging susceptibility
and a diverging length scale within MCT, which is
intimately due to the vanishing of the curvature of the
FP potential. Close to an A3 point, this length scale
diverges as jϵ⊥j−1=3, as announced above. The time
dependent analysis is more cumbersome and will be
presented in detail elsewhere [21]. The final result is

χq0ðk; tÞ≃
V⊥ðkÞξ2⊥

1þ Γðq0ξ⊥Þ2
G⊥

�
ln tffiffiffiffiffi
ξ⊥

p ; q0ξ⊥
�
; ϵ⊥ ≠ 0;

χq0ðk; tÞ≃
V∥ðkÞξ2∥

1þ Γðq0ξ∥Þ2
G∥

�
ln tffiffiffiffiffi
ξ∥

p ; q0ξ∥

�
; ϵ⊥ ¼ 0;

where V∥;⊥ðkÞ are certain functions, and ξ⊥ ¼ jϵ⊥j−1=3,
ξ∥ ¼ jϵ∥j−1=2, as indeed anticipated by the simple argu-
ments above.
By usual scaling arguments one finds that the q0 → 0

limit is well behaved provided G∥;⊥ðu; v ¼ 0Þ ∼ u4, and
therefore, at criticality, χc0ðk; tÞ ∼ ln4t, a result that is
compatible with the simulation results of attractive colloids
reported in Ref. [22]. Away from criticality, the ln4 t
behavior only persists up to a time τξ such that ln τξ ∼ffiffiffiffiffi
ξ∥

p
(or ln τξ ∼

ffiffiffiffiffi
ξ⊥

p
along the special line ϵ∥ ¼ 0.).

Another interesting limit is when the system is critical
ϵ∥;⊥ ¼ 0 and perturbed at a nonzero spatial frequency,
q0 ≠ 0. In order to retain a nontrivial dynamics, one must
now have G∥;⊥ðu → 0; v → ∞Þ ¼ gðu2vÞ, where gðxÞ is a
certain function behaving as x2 for small x, and saturating
to a constant for x → ∞. This leads to χcq0ðk; tÞ ¼
q−20 gðq0ln2tÞ, which shows that at criticality, the dynamical
length grows without bound, as ξcðtÞ ∼ ln2 t [23]. This
should be compared with the corresponding result for the
A2 point, where ξc ∼ ta=2, where a is the MCTexponent for
the β regime. As the A3 point is approached, the value of a

PRL 113, 245701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

245701-3



tends to zero and the power law crosses over to a
logarithmic behavior. Note that there is no α regime at
the A3 point, contrarily to the usual phenomenology of the
A2 transition. In the latter case, the q0 dependence of χq0 for
q0 ≫ ξ−1 crosses over from q−20 in the short time, β regime,
to q−40 in the long time, α regime. For the A3 transition, on
the other hand, only the q−20 behavior survives. We have
checked all of these results numerically by solving exactly
the dynamical equation obeyed by χq0ðtÞ in the so-called
schematic limit where all k dependence is discarded. We
have chosen the F13 model for which the memory kernel is
F ε½f� ¼ ϵ1f þ ϵ3f3. The salient features of the above
scaling predictions for χq0ðtÞ are confirmed in Fig. 2.
From a purely phenomenological point of view, the most
important points are as follows. (1) The growth of χq0 is a
logarithmic function of the relaxation time thus implying
that dynamical heterogeneities increase much slower close
to an A3 critical point than close to an A2 one; this might
explain the numerical data of Ref. [24]. (2) The shape of
χq0 is markedly different from the one found at an ordinary
MCT transition. In particular, both the maximum and
the long-time limit of χq0 diverge as the transition is
approached, at variance with what happens close to an
A2 point, where the long-time limit of χq0 remains
bounded.
All the above results should be only be valid in high

enough dimensions. In order to assess the effect of critical
fluctuations on mean-field results one has to focus on the
4-point density correlations often called G4ðrÞ, which is
related (in Fourier space) to the square of the dynamical
susceptibility χq0 defined above (see Ref. [25] for a full
justification of this relation). Since χq0 behaves as q−20 at

criticality,G4ðrÞ is found to decay as 1=rd−4 up to distances
of order ξ. This allows one to estimate the intensive
fluctuations of the order parameter f� in a region of size
ξd, which is found to be

ffiffiffiffiffiffiffiffiffiffiffi
hδf2i

p
∼ ξ−ð4−dÞ=2 ¼ ϵνð4−dÞ=2,

which must be compared to f� − fc ∼ ϵβ. Since β ¼ ν ¼
1=3 for A3 transitions (or β ¼ ν ¼ 1=2 along the special
direction) we conclude that the upper critical dimension dc
below which critical fluctuations change the nature of the
transition is dc ¼ 6, instead of dc ¼ 8 as found for usual
MCT transitions [25,26]. Therefore, in physical dimensions
d ¼ 3, one expects that these critical fluctuations will
considerably affect the above predictions, at least close
enough to the critical point. The relative influence of these
fluctuations, and the quantitive size of the Ginzburg region
where critical fluctuations are strong, are expected to
depend on the model. But one consequence of these
fluctuations that is physically relevant is the violation of
the Stokes-Einstein relation, relating the relaxation time of
the system to the diffusion constant of probe particles.
Simulations of thermal and athermal [27,28] systems
appear to conform to the prediction dc ¼ 8 for usual
MCT transitions, yielding, for example, a Stokes-
Einstein violation exponent that vanishes linearly as
8 − d [29]. Our above analysis demonstrates that near an
A3 singularity the upper critical dimension of fluctuations
is shifted down to a value dc ¼ 6. This result is indeed
qualitatively consistent with the fact that some aspects of
dynamical heterogeneity (such as bimodality of particle
displacement distributions) are suppressed as one tunes, via
the introduction of short-ranged attractions, a supercooled
hard-sphere suspension to a regime dominated by higher-
order singularities [30]. More numerical work on this and
other aspects of our theory would be welcome, using
simulations of attractive hard spheres in higher dimensions,
along the lines of Ref. [28].
Finally, the alert reader will have recognized, both from

the evolution of the FP potential shown in Fig. 1 and the
value of the exponent β ¼ 1=3 in generic directions and
β ¼ 1=2 in a special direction, that the A3 critical point is
akin to an Ising transition, where ϵ∥ is a magnetic-field-like
perturbation and ϵ⊥ is a temperaturelike perturbation. The
behavior of the correlation function G4ðrÞ ∼ r4−d, the
corresponding value dc ¼ 6 and, especially, the logarithmic
relation between time and length-scale point towards the
universality class of the RFIM, in line with previous static
treatments [3,5]. Indeed, the A2 line is analogous to the
spinodal line of the RFIM [26], which terminates at the A3
RFIM critical point. More concretely, in the physical case
of random pinning sites that induce higher order singular-
ities, the FP potential will acquire a random spatial
component. Given that the standard A2 transition is like
a spinodal of the FP potential, spatial fluctuations of the
FP potential create an A3 second-order critical point when
the minima of the FP potential merge. All of these results
strengthen the analogies with the physics of he RFIM.
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FIG. 2 (color online). Numerical results obtained by solving the
schematic F13 equations. χq0¼0 as a function of time approaching
the A3 critical point, which is indeed found to rescale as jϵ⊥j−2=3
times a function of jϵ⊥j1=6 × ln t. Inset: Scaling collapse, for
different q0 and t, of q20χ

c
q0 as a function of q0 ln

2 t at criticality, as
predicted from the theory.
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Remarkably, the logarithmic behavior of the correlation
function and of the dynamical correlation length that we
found is usually a manifestation of activated events which
are indeed expected for the RFIM at criticality, but were
thought to be impossible to grasp within a MCT formalism.
On the other hand, from the study of the RFIM we know
that there are two qualitatively different kinds of activated
processes: the critical ones emerging at the transition and
the ones responsible for nucleation. The former are
correctly described by the Landau theory above dc ¼ 6
(at least at a static level), whereas the analysis of the latter
requires to go beyond mean-field theory. In agreement with
that, MCT appears to be able to capture activated processes
at the A3 transition, possibly in a quantitatively correct way
above d > 6, but fails to describe the ones that destabilize
the glass phase below the MCT transition.
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