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In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding
honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-
dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting
and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a
small set of rules is allowed providing a framework for exploring and building kirigami—folding, cutting,
and pasting the edges of paper.
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From pleating a skirt [1], to wrapping a package [2], to
folding a paper airplane [3] or a robot [4], the art,
technology, and mathematics of origami explores the reach
and breadth of what can be created from nearly unstretch-
able surfaces [5,6]. Flat-folded origami is the folding of
two-dimensional surfaces with zero Gaussian curvature
everywhere [7]. All the structure therefore arises from the
extrinsic curvature of the sheet. Remarkably, the inverse
problem—how does one fold a target structure—is algo-
rithmically solved via a combinatorial procedure that
creates the base of the final product [8]. In this case, the
paper is flat away from the sharp creases. To exploit
origami for buildings, electronic circuits, robots, and
metamaterials that are typically made of rigid plates [9],
flat regions joined only at sharp bends is a necessary design
constraint. Though the sharp bends expose an exquisite
interplay of bending and stretching in real materials [10],
we (and others) set that physics aside and consider only
idealized, perfectly sharp folds in a nonshearable, non-
stretchable medium. With so much already understood,
what new modalities are available to advance the state of
“paper” art? Here we consider kirigami of a rigid two-
dimensional sheet with folds and cuts that remove topo-
logical discs from the original sheet. In Fig. 1 we show a
prototypical kirigami design, inspired by the deep ideas of
Sadoc, Rivier, and Charvolin on phyllotaxis [11–13]. By
exploiting the connection between topology and intrinsic
geometry we can add intrinsic curvature to sheets in a
controlled manner [14,15], an effect which can be coupled
with the extrinsic curvature techniques of origami. We
develop a series of rules for lattice kirigami, subject to some
simplifying restrictions for simplicity of presentation and
designability.
We develop our ideas on the honeycomb lattice: a natural

starting point if we are considering fixed edge-length
structures with, for instance, the minimum number of
fixed-length struts per unit area [16], graphene and

graphenelike materials [17], or self-assembled RNA net-
works [18]. As we will show, enforcing a no-stretching
condition on the bonds of the lattice strongly constrains the
allowed cuts and folds, leading us to identify a small set of
rules (which can be easily generalized for other starting
lattices) that can be used to build target structures. This
cutting (and pasting) leaves us with coordination number

FIG. 1 (color). The essence of kirigami. Top: We remove the
hatched region and make mountain (M) and valley (V) folds
along the indicated lines. Bottom: Final state with the edges of the
cut identified by pasting.
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defects [19] on both the honeycomb and its dual (triangu-
lar) lattice.
There are natural restrictions to impose on the lattice

kirigami, both to respect the nature of the lattice, and also to
simplify the development. (i) We assume that our sheet
cannot shear or stretch and can only be bent and cut along
straight lines. Further, we insist that (ii) edge lengths are
preserved on the lattice and its dual. Throughout we will
list assumptions and rules preceded by Roman or Arabic
numerals, respectively.
To begin, consider Fig. 1: after making cuts and

identifying edges we have a surface with all Gaussian
curvature concentrated at the cone points corresponding to
the corners of the cutout. We can clearly see two 5–7 dis-
clination pairs (pentagons and heptagons, respectively) and,
by following the red lines, the dislocation-antidislocation
pair they create [20,21].Wewill refer to the triangular lattice
of hexagon centers as ~Λ in the following and will label the
defects accordingly so that, for instance, a fivefold discli-
nation will be written ~5. Let l (see Fig. 2) point from the
dislocation to its corresponding partner in the antidislocation
pair—in Fig. 1 both ~7’s—whileb is theBurgers vector of the
dislocation. The prototype in Fig. 1 is especially symmetric
becausel⊥b. Since the final configuration can be arrived at
via a dislocation climb of a dislocation-antidislocation pair
wewill call this geometry pure climb. Similarly, if ljjb then
we will refer to that geometry as pure glide (see Fig. 3);
general configurations will have both glide and climb. It is
important to note that from an intrinsic point of view the
bond lengths are kept fixed and all the polygons are regular,
but the extrinsic geometry is naturally distorted as the
structure moves to three dimensions. Finally, we note that
there is a degeneracy in the folded structure. Each plateau
can individually “pop up” or “pop down.” This extra degree
of freedom should prove useful in the targeted design of

structures [22]. In the Supplemental Material we provide
cutting and folding templates for the home scientist—the
template for Fig. 2 is in Fig. S1 [23].
We can also preserve intrinsic bond lengths by working

on a second triangular lattice, Λ, the Bravais lattice
of the honeycomb. The honeycomb is not itself a
Bravais lattice, but instead a lattice with a basis. It is
necessary to interpret topological defects from the point of
view of the underlying Bravais lattice. The vectors e1 ¼
½0; 1� and e2 ¼ ½ ffiffiffi

3
p

=2; 1=2� are the basis vectors for ~Λ and
Λ. The two Bravais lattices are offset by the displacement
d ¼ ðe1 − 2e2Þ=3. Each Bravais lattice site on the honey-
comb has a two-vertex basis, one at the lattice site and the
other at a displacement of δ ¼ ½− ffiffiffi

3
p

=3; 0�, up to rotation
by 2π=3. As shown in Fig. 2 (and Fig. S2 [23]), a 2–4 defect
pair in Λ will appear as a pair of neighboring points on the
honeycomb lattice with twofold and fourfold coordination.
Note that when making the cut in this case assumption (ii)
makes it necessary to pairwise identify both vertices in the
basis so that we cut out a 2π=3wedge instead of π=3wedge
as in the defect pair in ~Λ on the right of Fig. 2. From this
point of view the 2–4 is a topological misnomer, though
one which we will continue to use for clarity. It is actually a
5–7 pair on Λ following the same rules that apply to ~Λ.
Finally, because the 2–4 and ~5–~7 defects are separated by a
vector that is not on either lattice, but rather a lattice
vector plus d, we will refer to this configuration as a partial
climb—a noninteger number of intervening sites must be
removed to form the structure in Fig. 2. Thus our first rule:
(1) The vector l between two disclinations—cut corners

of which are located on either Λ or ~Λ—can be composed of
a pure glide followed by a pure climb. More general
parallel, constant-width curves connecting excised wedges
can be chosen (see Fig. S2 [23]), but preserving the lattices

FIG. 2 (color). The two lattices Λ (red dots) and ~Λ (green dots)
offset by d. Yellow edges are on Λ. We show the basis vectors of
the lattices feig and the unit cells fδig. A 2–4 pair on the
honeycomb is a standard 5–7 pair on Λ. The cut is absorbed by
the ~5–~7 pair on ~Λ creating a partial climb. The plateaus of the 2–4
and ~5–~7 pairs are different heights upon folding.

FIG. 3 (color). The glide cut. We remove the hatched region,
make mountain (M) and valley (V) folds along the indicated lines,
and identify the sides of the triangles as indicated. The inset
shows the folded geometry. Note the cut along the line indicated
by the knife.
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requires that the cuts be a simple composition of glide and
(positive) climb components. It is an open question as how
to characterize the most general allowed cut that still allows
the sheet to embed in three dimensions.
In Fig. 1 the sidewalls of the plateaus are vertical so their

height is the lattice constant of ~Λ. (iii) We will restrict
ourselves to vertical sidewalls from this point on. This
immediately implies:
(2) Folds terminating at a corner of a disclination’s

excised triangle must be perpendicular to the cut edges. It
follows that the angle of each plateau corner is the
supplement of the excised angle so the folds are also
commensurate with the lattice. Although we adopt this rule
here for simplicity, it is one of the least essential rules in
that much of the lattice-dual lattice preservation that we
insist on can be maintained without it. As such, it is a
natural candidate to relax in future work.
Can cuts other than the 2–4 and ~5–~7 be made that still

preserve the both lattices? No: around a point of N-fold
symmetry, only cuts and rejoins that are multiples of 2π=N
bring different vertices into coincidence and preserve all
lattice distances. The honeycomb lattice has points of
twofold, threefold, and sixfold symmetry, but the twofolds
are not suitable sites. They occur at the midedges of both Λ
and ~Λ, so the formation of a π cone point leaves both
lattices with dangling half-edges. The only points around
which we can make the cuts are thus on the vertices of Λ,
Λþ d, and ~Λ. It follows that:
(3) The 2–4 and ~5–~7 pairs are the basic building blocks

of hexagonal lattice kirigami. Other motifs such as ~4–~8 can
be made by combining two ~5–~7 pairs in the appropri-
ate way.
The plateau created by the ~5–~7 is

ffiffiffi

3
p

taller than the
plateau of the 2–4 as the geometry of Fig. 2 dictates,
so these dislocations cannot be mixed around the
boundary of a shared plateau. Though cuts can cross,
folds cannot without creating extra cuts in the original
sheet—a dihedral angle in a vertical wall must be accom-
panied by a new dislocation. Because of the height
differences we have:
(4) Plateaus must be surrounded by 2–4 pairs (triangles)

or ~5–~7 pairs (hexagons), but they cannot be mixed.
Finally, note that the 2–4 and ~5–~7 motifs of Fig. 2 both

result in a strip of equal width being excised, which is
necessary for them to coexist at each end of one single
kirigami cut. A further requirement is that the disclination-
antidisclination pair face each other, without which the two
sides of the vacant strip would mismatch when pasted
together. This geometric argument can be summed up by
the usual rule for topological defects:
(5) The three-dimensional dislocation structures—the

pop-up or pop-down configurations—can cancel when
their Burgers vectors sum to zero. This rule is evident in
the dislocation-antidislocation pairs shown in Figs. 1–3,

which demonstrate opposite Burgers vectors through vary-
ing distances and orientations between the dislocation
structures, as well as a mixed 2–4=~5–~7 pair in the case
of Fig. 2: in all of these cases the perturbations to the flat
sheet of paper decay algebraically away from the defects.
The rule also applies to more than just “popped” pairs: to
see this consider, e.g., three dislocations with zero-sum
Burgers vectors and with positive-climb paths that can
converge together (as in Fig. S3 [23]). One can construct
the antidislocation pairs of each dislocation near this
convergence, so that together these antidislocations form
a triangular plateau with a height and shape correspond-
ing to their Burgers vectors. The three dislocations
already cancel at this plateau, but the situation can be
further simplified by bringing the corners of the plateau
together to a single point. As the sides of the triangle
shorten, the height of the plateau remains constant until
the points touch, when the entire plateau vanishes. The
three antidislocation pairs mutually annihilate, leaving the
original three dislocations to cancel in the standard way
in-plane.
Figures 1 and 2 show climb dislocation pairs but

kirigami also allows for pure glide configurations, with
l∥b, in which no extra material is added or removed in the
dislocation itself. Consider two ~5–~7 defects as in Fig. 3
(Fig. S4 [23]). We remove two equilateral triangles sep-
arated by a cut perpendicular to the disclination dipole
direction, along the Burgers vector. Bringing the edges of
the triangles together slides one edge of the cut along the
other. From the point of view of actuators, this mode of
popping into the third dimension can have all the mechan-
ics built onto the paper—a ratchet-and-pawl or rack-and-
pinion could be manufactured into the initial sheet. In a
passive design the cut could have a sawtooth profile to
ensure the gliding motion of assembly is irreversible
(Fig. S5 [23]). By putting together the geometries in
Figs. 1 and 3, we can add climb to a glide by extending
either triangular cutout along a climb direction. This
configuration can then be modified as shown in Fig. S2
of [23] to have the dislocation pair connected by cuts with
mixed climb and glide components. We can replace
a ~5–~7 in Fig. 3 with a 2–4 pair, but only by adding a
partial climb—a 2–4 and ~5–~7 pair cannot be connected
by a pure glide due to the necessary lattice offset.
Up until this point we have considered cutout regions for

which the identification of edges is set by the geometry—
long edges join with long edges. However, we may also
consider a completely symmetric situation. Consider the
cuts and folds in Fig. 4(a). (Fig. S6 in the Supplemental
Material [23]). If we were to cut out the hatched region we
would create a vacancy in ~Λ. There are three degenerate
ways to fold the up-down structure formed by identifying
any two pairs of parallel edges. Once we break the
degeneracy [Fig. 4(b)] we can fold one pair and then bring
the two dislocations together [Fig. 4(c)] to form the final

PRL 113, 245502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

245502-3



state that is independent of our choice of initial folds
[Fig. 4(d)]. The resulting state is reminiscent of the
instability that leads to martensites and tweeds in crystals
when a particular crystal habit can be distorted along
different paths to a new crystal habit—for example, the
three different Bain strains that turn the fcc lattice into the
bcc lattice [24].
We note that the threefold structure in Fig. 4(d), which

we dub the “sixon”, can also be formed by pure origami
with the set of mountain and valley folds illustrated in
Fig. 4(a). This construction similarly brings all three
vertices together and effects a vacancy by folding the
paper of the “excised” hexagon underneath the surface,
although it is an open question whether the configuration
is rigid foldable. If not, previous results suggest that this
pattern could be made rigidly foldable [25], but only at
the cost of adding extra (and probably sublattice) folds.
On the other hand, by excising the interior hexagon both
the detached hexagon of Fig. 4(e) and the kirigami of
Fig. 4(d) can be rigidly folded individually, and the
excised hexagon reattached if desired within the cut-and-
paste rubric of kirigami.

Looking at the cutting patterns for dislocation pairs
shows the possibilities afforded by kirigami that pure
origami lacks. There are clever techniques within origami
for forming wedges and pleats to “remove” material by
tucking it behind the visible surface, creating dipoles of
Gaussian curvature similar to our dislocations. However, a
consideration of, for example, the glide dislocations of
Fig. 3 indicates that the structures created so simply with
kirigami techniques require dramatically plicated corre-
spondences in pure origami of high complexity involving
not only many additional folds but large swathes of
“wasted” triple thickness paper. In this way using tradi-
tional origami to achieve a sixon is reminiscent of the
historical introduction of epicycles into the supposedly
circular orbits of planets in order to correct for the
differences between theory and observation, instead of
changing paradigm to elliptic orbits. From a design
perspective the simplicity of kirigami is thus seen in
contrast to the complex folding sequence of pure origami
needed to achieve a target structure.
To complement the paper models and to demonstrate the

robustness of kirigami-based design principles, we have
shown how these motifs can be realized by a simple
combination of a Tyvek (nonwoven, Spunbonded Olefin,
Type 10) base with folding cues supplied by heat-shrinkable
polyolefin (SPC Technology). We provide the detail in the
Supplemental Material [23] (Fig. S7) along with a link to a
movie of the construction. Additionally, we may create ever
more embellished structures by relaxing some of the rules.
For instance, the identified edges of a cut need not be straight
lines as long as they are separated by the Burgers vector. One
could use this, for instance, to make serrations along a glide
cut to lock the structure rigidly. We can also consider
structures that go off lattice to create nonvertical sidewalls,
either overhanging or reclining. We may also mix the rules
on the original lattices with rules on larger sublattices
obtained by rotating the original lattices to create a coinci-
dence lattice as in moiré patterns [26]. These and other
extensions will be considered elsewhere [22].
In summary, we have developed a small set of rules that

minimally distort both an underlying honeycomb lattice of
bonds and its dual to achieve localized Gaussian curvature
and three-dimensional structure. These rules can be under-
stood in terms of the standard topological theory of
dislocations and disclinations with the addition of intrinsic
geometry to prevent stretching of an underlying, rigid
material. Finally, we have shown that the interplay of cuts
and folds limits the allowed interactions of defects on the
sheet. Future work might consider these sorts of construc-
tions on precurved [27–29] or preswelled [30–33] sheets, in
particular riffs on the regular tesselations of the hyperbolic
plane as popularized by M. C. Escher [34]. We believe that
these rules and ideas, coupled with clever materials design
[9,17] will lead to new and useful ideas, modalities, and
devices.

(a) (b)

(c)(d)

(e)

FIG. 4 (color). The “sixon.” (a) Basic template. (b) This
structure is degenerate and can be split three different ways into
matching 2–4 pairs with pop up and pop down configurations.
(c) An intermediate state connecting (b) to the final state (d). The
hexagon in (e) can be made with with mountain and valley folds
made along the red and blue lines, respectively, and then inserted
into the threefold intersection in (d).
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