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We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon
interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the
three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic
interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial
saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its
slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the
properties of the three-nucleon system, these results indicate that the explicit introduction of the quark
degrees of freedom within the considered constituent quark model is expected to reduce the role of three-
body forces.
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Introduction.—Understanding the properties of the
nuclear medium on the basis of the bare interaction among
nucleons is one of the fundamental issue of nuclear physics.
Several methods have been used to model the nucleon
interaction and to develop accurate many-body theory to
describe the correlations in nuclear systems. It has been
established [1–3] that realistic nucleon-nucleon (NN)
potentials based on the meson-exchange interaction model
fail to reproduce the correct saturation point and require the
introduction of three-body forces (TBFs). The latter can be
phenomenological [4,5] or more fundamental [6,7]. In any
case, within this framework, the effect of TBFs is moderate,
but it is essential to shift the saturation point inside the
phenomenological boundaries. The main problem of this
approach is that it appears difficult to devise a TBF that
describes satisfactorily well few-body systems and at the
same time nuclear matter near saturation [8]. The same
conclusion has been reached within the variational many-
body method [9]. In this types of nuclear forces, nonlocal
two-body interactions [10] have been constructed that
reproduce closely the binding energy of three and four
nuclear systems. However, they fail to reproduce the correct
saturation point [11]. The Dirac-Brueckner-Hartree-Fock
(DBHF) method introduces relativistic effects in the many-
body theory. With only two-body forces and two-body
correlations, the saturation point is fairly well reproduced
[12], but the problem of the few-body systems remains
unsolved. It can also be shown [13] that the relativistic
effects introduced by the DBHF scheme are equivalent to a
particular TBF at the nonrelativistic level. More recently,
the chiral effective forces have been developed [14,15].
These forces were devised to connect the underlying
quantum chromodynamics theory of strong interaction
among quarks to the low energy interaction among nucle-
ons. However, no explicit quark degrees of freedom
are introduced, but it is based on the expansion of the

interaction in the chiral symmetry breaking parameter, i.e.,
the ρ-meson mass mρ. As such, it is an expansion in k=mρ,
where k is the typical nucleon momentum. It has the
fundamental property to classify the forces according to the
expected relevance, following a “power counting” rule.
Three-body (or higher) forces arise naturally in this
expansion. Even if the assignment of the order to the
different interaction processes looks tricky [16], this
approach has been developed both at the fundamental level
[17–19] and in a wealth of applications to nuclei [20] and
nuclear matter [21–24]. The parameters of the forces are
fixed by fitting the NN phase shifts and eventually the
properties of the three-body system. However, the pro-
cedure does not look unique. In Ref. [25], it has been shown
that it is possible to construct a realistic chiral two-body
force that reproduces the spectroscopic data on light nuclei
without invoking TBFs. However, symmetric nuclear
matter was not considered. In Ref. [26], it has been shown
that a version of chiral force was able to reproduce, by a
suitable choice of the momentum cutoff parameter, the few-
body binding energies and at the same time a fair saturation
point. However, this remarkable result needs confirmation,
since two- and three-body forces were actually taken at
different orders, and some correlation diagrams were
neglected. In any case, for all chiral forces, TBFs are the
dominant mechanism for saturation. Indeed, with only two-
body forces, no saturation is apparent in nuclear matter.NN
potentials based on the constituent quark model have been
developed for some decades, since the resonating-group-
method (RGM) equations were first solved by Oka and
Yazaki [27]. In this model, the quark degrees of freedom are
explicitly introduced, and the NN potential is derived from
the quark-quark (qq) interactions. The resulting interaction
is highly nonlocal due to the RGM formalism and contains
a natural cutoff in momentum. Realistic quark-model (QM)
interactions were proposed by Fujiwara et al. [28], in which
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the qq interaction consists of a color analog of the Fermi-
Breit interaction and an effective meson-exchange poten-
tial. The most recent model fss2 [29] reproduces the
experimental data on the few-body systems (triton, hyper-
triton [30], and α particle [31] and nucleon-deuteron
scattering [32]) fairly well without introducing TBFs. In
this Letter, we present results for nuclear matter obtained
with the QM force within the Bethe-Bruekner-Goldstone
(BBG) many-body expansion up to the three hole-line level
of approximation. A pedagogical introduction to this many-
body method can be found in Ref. [33]. The energy
dependence inherent to the RGM formalism is eliminated
by the off-shell transformation utilizing the norm kernel as
in Refs. [34,35] and the Gaussian representation of fss2

[36] is used. The set of Goldstone diagrams that are used in
the calculations is reported in Fig. 1. The BBG expansion
classifies the diagrams according to the number of hole
lines that they contain. Figures 1(a) and 1(b) (direct and
exchange) include two hole lines, and they correspond to
the well-known Brueckner-Hartree-Fock (BHF) approxi-
mation. The wavy line indicates the Brueckner G matrix
[33]. In the BBG expansion, an auxiliary single-particle
potential UðkÞ is introduced and calculated self-consis-
tently according to the Brueckner prescription. However,
the auxiliary potential is not unique. Two somehow
opposite choices are possible. In the so-called “standard”
or gap choice (GC), the potential is assumed to be zero
above the Fermi momentum, while in the “continuous”
choice (CC), the potential is calculated self-consistently
also above the Fermi momentum. In principle, the final
result should be independent of U, which is introduced in
order to rearrange the perturbation series for a faster
convergence. The comparison of the result obtained with
the gap and the continuous choice can be used to estimate
the degree of convergence of the expansion [2,3]. The
rearrangement of the expansion is embodied in a series of
U-insertion” diagrams. The first one is Fig. 1(d), while
Fig. 1(c) is a self-energy insertion. Notice that the various
self-energy or U-insertion diagrams must follow from the
BBG expansion; otherwise, an arbitrary number of inser-
tions would spoil the hole-line ordering of the diagrams.
Figure 1(e) is generally indicated as a “ring diagram.” It
describes long-range correlations in the matter. Figure 1(f)
describes the full scattering process of three particles that
are virtually excited above the Fermi sphere, and its
evaluation requires the solution of the Bethe-Fadeev
equations [1,33,37]. The sum of Figs. 1(c)–1(f) gives the
three hole-line contribution, which, according to the BBG
hole-line expansion, is expected to be substantially smaller
than the two hole-line (Brueckner) contribution.
Results.—The results for symmetric matter (SM) in the

CC are reported in Table I for a set of values of Fermi
momenta around saturation, with the breakdown of the
contributions of each diagram.
The last column reports the final EOS obtained summing

up the two hole- and three hole-line contributions. In the
column before the last, the total contribution of the three

FIG. 1. Different Goldstone diagrams contributing to the
nuclear matter equation of state (EOS). The wavy line indicates
Brueckner G-matrix. Diagrams corresponding to the two hole-
line approximation are labeled (a) and (b). Diagram (d) is the first
potential insertion in the hole-line expansion. Diagram (e) is the
ring diagram, which includes long range correlations. The box
labelled Tð3Þ is the in-medium three-body scattering matrix.
Diagram (c), usually indicated as ''bubble diagram", is the first
term of the set of diagrams obtained once the expansion of Tð3Þ
is inserted in (f) and it has been singled out for numerical
convenience.

TABLE I. Three hole-line contributions to the symmetric matter EOS for different Fermi momenta kF in fm−1. E3 is the total three
hole-line contribution, B is the “bubble diagram” of Fig. 1(c), BU is the U-insertion diagram of Fig. 1(d), R is the “ring diagram” of
Fig. 1(e), and H indicates the “higher order” diagrams, as defined in the text. Energies are in MeV.

kF T þ E2 B BU R H E3 EOS

1.1 −17.090 −7.020 10.655 −0.750 0.177 3.072 −14.028
1.2 −19.680 −6.351 11.407 −1.270 0.157 3.943 −15.737
1.3 −22.154 −4.669 11.647 −1.761 0.144 5.361 −16.793
1.4 −24.393 −2.689 12.340 −2.030 −0.079 7.542 −16.851
1.5 −26.183 0.223 12.781 −2.122 0.050 11.022 −15.161
1.6 −27.498 4.162 13.759 −2.280 0.029 15.670 −11.828

PRL 113, 242501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

242501-2



hole-line diagrams is reported. Table II is similar but for the
gap choice. Notice that in this case, the U-insertion
Fig. 1(d) vanishes. The comparison between the two sets
of results for the EOS of SM is summarized in Fig. 2 for a
wider range of density. One can see that at the Brueckner
(two hole lines) level of approximation, the continuous and
gap choices differ by a few MeV, being the continuous one
more attractive. However, as the three hole-line contribu-
tion is added, the two EOSs are quite close. The discrep-
ancy around saturation is not exceeding 1 MeV, and it is
vanishing small just at saturation. We consider this result as
a strong indication of the convergence of the BBG
expansion. However, at high density the discrepancy tends
to increase, which indicates a lower degree of convergence,
but no divergence of the expansion is really apparent. It has
to be noticed that for other NN interactions, in particular,
the Argonne v18 potential and the corresponding simplified
versions v8, v6, and v4, the three hole-line contribution is
much smaller in the CC than in the GC [38]. For the present
QM potential, it is the opposite; in the gap choice, the
convergence of the energy looks faster. One can notice that
around saturation, the ratio between the three hole-line
correlation energy and the two hole-line one (BHF) is 0.15
for the CC and 0.02 for the GC. This is in line with the
expectation of the hole-line expansion and supports the
validity of the BBG expansion. Notice that the second
columns of Tables I and II include the free kinetic energy T.

If the EOSs around saturation are fitted with a form of the
type E=A ¼ aρþ bργ , the saturation point turns out to be
e0 ¼ −16.9 MeV and ρ0 ¼ 0.166 fm−3 for the CC and
e0 ¼ −16.06 MeV and ρ0 ¼ 0.177 fm−3 for the GC. This
establishes the range of the uncertainty on the predicted
saturation point and of the whole EOS in the considered
density range. From the same fits, one can extract the
compressibility at saturation, which turns out to be K ¼
228 MeV for the CC and K ¼ 192 MeV for the GC. These
values can be considered compatible with the range encom-
passed by the phenomenological constraints [39], the GC
value being at the lower edge. A similar analysis can be
performed for pure neutron matter (PNM). The correspond-
ing EOSs for the CC and GC are reported in Fig. 3.
For comparison, two EOSs, which include three-body

forces, are also reported, one from the BHF approach [5]
and one from the variational method [9]. A blowup of the
low density region is reported in Fig. 4, where, in addition,
the EOS obtained from the chiral force approach of
Ref. [40] is reported. The region enclosed inside the thick
full line indicates the allowed area where the EOS should
pass through according to the chiral approach of Ref. [41].
The relatively close agreement among the different
approaches shows that the separation between two-body
and three-body forces, as well as the relevance of higher
order correlations, are substantially model dependent. The
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FIG. 2. EOS of symmetric nuclear matter at the two-hole level
of approximation (open symbols) and at the three hole-line level
(full symbols) for the continuous (squares) and the gap (circles)
choices, respectively.

TABLE II. The same as in Table I but in the gap choice for the single-particle potential.

kF T þ E2 B R H E3 EOS

1.1 −11.605 −0.556 −1.003 0.063 −1.496 −13.101
1.2 −13.525 −0.029 −1.119 0.040 −1.108 −14.633
1.3 −15.439 0.846 −1.251 0.033 −0.372 −15.721
1.4 −16.959 2.213 −1.301 0.021 0.933 −16.026
1.5 −18.212 4.234 −1.296 0.012 2.575 −15.272
1.6 −18.974 7.233 −1.328 0.006 5.911 −13.063
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FIG. 3. The EOS of pure neutron matter at the three hole-line
level of approximation with the QM potential in the continuous
(full squares) and gap (full circles) choices. For comparison, one
BHF EOS from Ref. [5] (dashed line) and the one of Ref. [9]
(stars) are also reported. The latter two include three-body forces.
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symmetry energy SðρÞ can be then extracted as the differ-
ence between the PNM and SM, which is valid for a
quadratic dependence of the EOS on asymmetry. The fits
give also the derivative of asymmetry at saturation, as
embodied in the parameter L ¼ 3ρð∂S=∂ρÞ. One finds
S0 ¼ 34 MeV and L ¼ 54 MeV for the CC, and S0 ¼
33.7 MeV and L ¼ 53 MeV for the GC, again compatible
with phenomenology [39].
Discussion.—The microscopic EOS obtained from the

QM interaction compares well with phenomenological
constraints, at variance with modern NN meson-exchange
interaction models. Since the interactions are phase equiv-
alent, the reason of the discrepancy must be due to the
different off-shell behavior of the QM interaction. In
particular, this can be related to the characteristic non-
locality of the repulsive core [32] as produced by the quark-
exchange processes. Notice that the presence of nonlocality
not necessarily improves the saturation point [11]. We also
find that at the BHF level, the contribution of the 3S1 − 3D1

channel is much larger than for the other interactions, e.g.,
the Av18. This large contribution is responsible almost
completely for the too-attractive EOS in BHF, whose
saturation point is well outside the Coester band. The
larger three hole-line contribution for QM than for Av18 is
qualitatively in line with the trend of the corresponding
values of the wound parameters at saturation, 0.072 and
0.037, respectively. However, a large contribution (0.019)
to the wound parameter comes from the 3S1 − 3D1 channel
in Av18, while this is quite small for QM (0.009), probably
due to the softer short-range repulsion. A comparison with
Av18 shows that the saturation mechanism with the QM is
the steeper increase with density of the three hole-line
contribution. This is due to two reasons: (i) The larger value
of the U-insertion diagrams and its increase with density,
while for Av18 it is decreasing, and (ii) the very small values
of the higher order diagrams, which in Av18 are relevant
and negative.

The need of three-body forces with the QM interaction
seems to be reduced to a minimum. The consistency of this
conclusion could be checked by deriving explicitly the
three-body forces from the same quark model, which is left
to a future long-term project.
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