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The stability of the standard model is determined by the true minimum of the effective Higgs potential.
We show that the potential at its minimum when computed by the traditional method is strongly dependent
on the gauge parameter. It moreover depends on the scale where the potential is calculated. We provide a
consistent method for determining absolute stability independent of both gauge and calculation scale, order
by order in perturbation theory. This leads to a revised stability bounds mpole

h > ð129.4� 2.3Þ GeV and
mpole

t < ð171.2� 0.3Þ GeV. We also show how to evaluate the effect of new physics on the stability bound
without resorting to unphysical field values.
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An intriguing consequence of the recent discovery of the
Higgs boson is that its mass apparently places the standard
model (SM) near the border between absolute stability and
metastability [1,2]. A renowned plot, Fig. 3 of [2], shows
the standard model lying close to the end of a metastability
funnel in the Higgs-mass–top-mass plane. This unantici-
pated tuning has inspired a fair amount of speculation about
its possible origin and implications. Stability is normally
determined by examining the zero-temperature effective
potential V for the SM [1–5]: if this potential has a negative
minimum at large field values, the SM is said to be
unstable; if the inverse decay rate for tunneling out of
the electroweak minimum is larger than the lifetime of the
Universe, the SM is said to be metastable. While these
criteria are physical, the extraction of numerical bounds
within a consistent perturbation expansion is not
straightforward.
One complication in making physical predictions with V

is that effective potentials are not gauge-invariant [6].
Although physical quantities extracted from an effective
potential (or more generally from an effective action) must
be gauge invariant, there have been surprisingly few
explicit checks [7–10]. The traditional approach is simply
to work in Landau gauge where calculations are easiest and
to assume that the approximations used are self-consistent.
Progress in understanding the gauge dependence was

made by Nielsen [11] and independently by Kugo and
Fukuda [12] in 1975. One result from these papers is that
the effective potential satisfies a differential equation:

�
ξ
∂
∂ξþ Cðh; ξÞ ∂

∂h
�
Vðh; ξÞ ¼ 0; ð1Þ

where ξ is the gauge parameter in Fermi gauges and Cðh; ξÞ
is a calculable function. This Nielsen identity says that the
gauge dependence of the effective potential can be com-
pensated for by a rescaling of the scalar field h. Two generic
implications are that (i) the value of the field h can never be

physical, since any rescaling of the field can be compen-
sated for by a gauge change and (ii) the value of Vðh; ξÞ at
an extremum in h should be gauge invariant. Gauge-
dependent quantities then include the value of V at any
nonextremal point, and the value of h at any point (extremal
or not). It is worth noting that Eq. (1) is not quite as
powerful as it might seem, since Cðh; ξÞ can be infinite in
perturbation theory [9,11,13].
Despite the widespread contentment with Landau gauge,

the gauge dependence of the effective potential has occa-
sionally caused some discomfort [14–18]. A handful of
papers have proposed field redefinitions to generate a
gauge-independent potential [19–21]. This approach pur-
portedly allows the effective potential to be used like a
classical potential, assigning physical significance to both
field values and the potential at each point. However, it is
not clear why removing the gauge dependence automati-
cally makes the potential physical. Moreover, for the field
redefinition to be justified it should leave physical quan-
tities unchanged; in that case, we may as well work with
fields that make the calculations easiest.
The effective potential has another feature which has not

generally been appreciated: it depends on the scale where it
is calculated. To see this, note that V satisfies a renorm-
alization group equation [22]:

�
μ
∂
∂μ − γh

∂
∂hþ βi

∂
∂λi

�
V ¼ 0: ð2Þ

This equation says that the explicit μ dependence of the
potential can be compensated for by rescaling the couplings
according to their β functions and rescaling the field h
according to its anomalous dimension γ. Thus, if we know
the potential at a scale μ0 in terms of the couplings λiðμ0Þ
we can find it at a scale μ by solving this equation. Call this
method 1. Alternatively, we could have just computed it at
the scale μ to begin with, in terms of the couplings λiðμÞ.
Call this method 2. Methods 1 and 2 do not give the same
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potential, to any order or to all orders in perturbation theory.
They differ by the rescaling of the field h. This is not a
problem, since we have already concluded from Eq. (1) that
physical quantities extracted from V should be independent
of field rescaling. The additional freedom of choosing μ0
illustrates that even in a fixed gauge or with gauge-invariant
composite fields, field values are still unphysical.
The unphysical nature of V may be less unsettling after

recalling that the effective potential is the constant-field
limit of the 1PI effective action. The vertices of this action
at tree-level produce 1PI correlation functions, which can
be gauge and scale dependent and satisfy an RGE like
Eq. (2). Gauge-invariant S-matrix elements are related to
correlation functions by amputation and (in MS) gauge-
dependent wave-function renormalization Z factors. These
factors also compensate for the scale dependence, letting
the S matrix satisfy an RGE like Eq. (2) without the γ term.
Fortuitously, the value of the potential at a minimum

Vmin, (or at any extremum) is both gauge invariant and
independent of the scale where it is calculated, without
extra Z factors. The former invariance follows from Eq. (1)
and the latter invariance holds simply because the value of
any function at any extremum is invariant under any
rescaling of its argument. Since the absolute stability bound
in the SM is determined by the condition Vmin < VEW ≈ 0,
with VEW the energy of our vacuum (usually renormalized
to zero), the bound should be gauge independent.
Unfortunately, gauge invariance has only been proven
nonperturbatively. Indeed, we find that the stability bound
is gauge dependent at each order in perturbation theory if
computed by the traditional approach (see Fig. 1 or [18]). In
[13], it was shown how effective potential calculations can
be reorganized so that Vmin is gauge invariant order by
order. In this Letter, we review this “consistent approach”
and apply it to the SM.
We write the SM effective potential as VðhÞ, where in

unitary gauge the Higgs doublet is normalized as
H ¼ ð1= ffiffiffi

2
p Þð 0

vEWþhÞ. The traditional perturbation approach
leads to a renormalization-group-improved effective poten-
tial of the form [2]

VðhÞ¼ 1

4
h4e4ΓðhÞ½λð0Þeff ðμ¼ hÞþλð1Þeff ðμ¼ hÞþ �� �� ð3Þ

with ΓðhÞ≡ R
h
mt
γðμ0Þðdμ0=μ0Þ and 1

4
λðjÞeff ðμÞh4 the j-loop

fixed-order effective potential.
Since stability is determined by large field values and the

potential grows as h4, the quadratic term −m2h2 in the
classical potential can be neglected to excellent accuracy.
Then the electroweak minimum is at VEW ¼ 0 and the
stability bound is determined as the critical Higgs pole
mass for which the potential has another minimum with
Vmin ¼ 0. The physical Higgs boson mass enters through
threshold corrections at the weak scale which convert
observables into MS couplings. Currently, the β functions
and γ are known to 3-loop order in general Rξ gauges, the
fixed-order potential is known to 2-loop order in Landau
gauge (ξ ¼ 0), and the threshold corrections are known to 2
loops (an alternate scheme is discussed in [23]). Using
Eq. (3) and the best available data, Ref. [2] found an
absolute stability bound of mpole

h > ð129.1� 1.5Þ GeV.
Using equations from [2], with some minor corrections
confirmed by its authors, and including tau and bottom
contributions, we have reproduced this result. We now
update the top mass to mpole

t ¼ ð173.34� 1.12Þ GeV, with
the central value and �0.76 GeV of the uncertainty from
[24], and an additional 0.82 GeV theory uncertainty added
in quadrature due to the ambiguity in converting from a
Monte Carlo mass scheme to a pole mass scheme [25,26].
Also including the 3-loop QCD threshold corrections to λ
listed but not used in [2], we update this traditional-
approach bound to mpole

h > ð129.67� 1.5Þ GeV.
The gauge dependence of the stability bound at 1 loop is

shown in Fig. 1, to be discussed more below. The reason the
stability bound appears gauge dependent is due to an
improper use of perturbation theory. The key insight, made
long ago by Coleman and Weinberg [22] is that the usual
loop expansion is inappropriate for effective potentials near
quantum-generated minima. Simply put, the classical
potential V0 ∼ λh4 can only turn over due to 1-loop
corrections of the form V1 ∼ ðg4ℏ=16π2Þh4 for some g if
λ ∼ ðg4ℏ=16π2Þ. Since λ ∼ ℏ, each factor of λ in a diagram
changes its effective loop order. Thus perturbation theory in
ℏmay still be appropriate, but since λ ∼ ℏ it is not the usual
loop expansion.
An additional complication is that the effective potential

has terms scaling like inverse powers of ℏ. For example, a
term ∼ℏ3g10λ−1 appears at 3 loops; since λ counts as ℏ, this
term scales like ℏ2 and contributes competitively with the
2-loop terms. Including all relevant terms according to this
modified power counting, it was shown in [13] that Vmin is
indeed gauge invariant in scalar QED. The required terms
include the 2-loop effective potential in Rξ gauge as well as
an infinite series of “daisy” loops producing terms in V
proportional to g4jþ2λ1−j.

1–loop, traditional method

LO, consistent method

2 loops, traditional method (Landau gauge)

NLO,  consistent method
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FIG. 1 (color online). Gauge dependence of the absolute
stability bound with mpole

t ¼ 173.34 GeV.
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The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] translates
to the SM as follows. First, we truncate the effective
potential to order ℏ with λ ∼ ℏ power counting. This gives
the leading-order (LO) potential

VðLOÞðhÞ ¼ 1

4
λh4 þ h4

1

2048π2

�
−5g41 þ 6ðg21 þ g22Þ2

× ln
h2ðg21 þ g22Þ

4μ2
− 10g21g

2
2 − 15g42

þ 12g42 ln
g22h

2

4μ2
þ 144y4t − 96y4t ln

y2t h2

2μ2

�
: ð4Þ

Note that this potential includes tree-level and 1-loop
contributions, and is gauge invariant. From this, we
can solve for the scale h ¼ μX where dVðLOÞ=dh ¼ 0.
Explicitly, μX is the MS scale where the condition

λ ¼ 1

256π2

�
g41 þ 2g21g

2
2 þ 3g42 − 48y4t

− 3ðg21 þ g22Þ2 ln
g21 þ g22

4
− 6g42 ln

g22
4
þ 48y4t ln

y2t
2

�

ð5Þ

is satisfied. For values of mh and mt close to the observed
SM values, there are two solutions to this equation:
the lower μX is where VðLOÞ has a maximum, and the
higher μX where the minimum occurs. In the SM these
scales are

μmax
X ¼ 2.46 × 1010 GeV; ð6Þ

μmin
X ¼ 3.43 × 1030 GeV: ð7Þ

These numbers and the results which follow use
mpole

h ¼ ð125.14� 0.24Þ GeV, combined from [27,28].
For the potential at the next-to-leading order (NLO), one

contribution comes from the ℏ2 terms in the 1-loop
potential with λ ∼ ℏ scaling:

Vð1;NLOÞðhÞ

¼ −1
256π2

�
ξBg21

�
ln
λh4ðξBg21 þ ξWg22Þ

4μ4
− 3

�

þ ξWg22

�
ln
λ3h12ξ2Wg

4
2ðξBg21 þ ξWg22Þ
64μ12

− 9

��
λh4: ð8Þ

Another contribution Vð2;NLOÞðhÞ comes from the λ0 and
ln λ terms in 2-loop potential. In Landau gauge, these terms

are h4=4 times what is written as λð2Þeff in Eq. (C.4) of the
published version of [2]. Finally, there is the contribution,
Vðn>2;NLOÞðhÞ from 3-loop and higher order graphs

proportional to inverse powers of λ. Including all these
terms, the potential at each extremum will be gauge
invariant. Conveniently, the higher-loop-order graphs
contributing at NLO vanish in Landau gauge
(ξB ¼ ξW ¼ 0). Thus the gauge-invariant NLO value of
the potential at the minimum is simply

VNLO
min ¼ VðLOÞðμXÞ þ Vð2;NLOÞðμXÞ: ð9Þ

To derive this, we consistently truncated toOðℏ2Þ and used
ðd=dhÞVðLOÞ ¼ 0 at h ¼ μX. Note that this is the RG-
improved effective potential: the resummation is implicit in
the solution for μX. At NNLO, an infinite number of loops
are relevant, even in Landau gauge [13].
Using Eq. (9) we find that for absolute stability at NLO,

the Higgs pole mass must satisfy

mpole
h

GeV
> ð129.40� 0.58Þ þ 2.26

�
mpole

t − 173.34 GeV
1.12 GeV

�
:

ð10Þ

This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge
(mpole

h > 129.67 GeV). The �0.58 is pertubative and αs
uncertainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< ð171.22� 0.28Þ þ 0.12

�
mpole

h − 125.14 GeV
0.24 GeV

�
:

ð11Þ

Figure 1 compares the gauge dependence of the bound
at 1 loop to the LO, NLO, and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) Rξ gauge
parameters equal to ξt when μ ¼ mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at LO is
mpole

h > 129.69 GeV which is nearly identical to the
Landau gauge 1-loop bound in the traditional approach,
mpole

h > 129.70 GeV. We do not plot the gauge depend-
ence of the 2-loop bound since we have not computed the
gauge-dependent 2-loop potential or the daisy contribu-
tion. That the bound seems to asymptote to a finite value
in unitary gauge ðξ ¼ ∞Þ may be due to much (but not
all) of the gauge dependence being in the e4Γ prefactor in
Eq. (3) which drops out of the V ¼ 0 condition.
Figure 2 shows the gauge dependence of the instability

scale ΛI, defined by VðΛIÞ ¼ 0 [1,2], and its Landau-gauge
value at 2 loops, including 3-loop resummation in both
cases. Since the instability scale is a field value, it is not
obviously physical. We know of no way to compute it in a
consistent and gauge-invariant manner.
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We find approximately exponential dependence of Vmax
(and also Vmin) on ξt in the traditional approach at 1 loop.
Decent fits are

ðV1 loop;trad:
max Þ1=4 ≈ ð2.50 × 109 GeVÞe−0.02ξtþ0.0003ξ2t ;

ð−V1 loop;trad:
min Þ1=4 ≈ ð3.08 × 1029 GeVÞe0.001ξt−0.0001ξ2t :

ð12Þ

The consistent gauge-invariant values at NLO are

ðVNLO
max Þ1=4 ¼ 2.88 × 109 GeV;

ð−VNLO
min Þ1=4 ¼ 2.40 × 1029 GeV: ð13Þ

We emphasize that our calculations so far have been
specific for the standard model in the absence of any new
physics. Since −Vmin corresponds to an energy density well
above the Planck scale, the potential at the minimum will
surely be affected by quantum gravity and possible new
physics up to some scale ΛNP which we have not included.
Previous analyses have defined stability to be Planck
sensitive if the instability scale ΛI > MPl [1,2]. As we
have observed, the instability scale is gauge dependent, so
this is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ≡ ð1=Λ2

NPÞh6 be comparable
to Vmin when h ¼ hhi. Although O6 and Vmin are gauge
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition is
also unsatisfactory. A consistent and satisfactory criterion
was explained in [13]: the new operator must be added to
the classical theory and its effect on Vmin evaluated.
Adding O6 to the potential, we find that the potential is

still negative at its minimum in the SM even for operators
with very large coefficients. For example, taking ΛNP¼
MPl¼1.22×1019GeV, we find that μmin

X ¼6.0×1017GeV
and Vmin ¼ −ð1.1 × 1017 GeVÞ4. Comparing to Eq. (13)
we see that the energy of the true vacuum is very Planck
sensitive.

More generally, a good fit is given by

Vmin ¼ −ð0.01ΛNPÞ4; ΛNP ≳ 1012 GeV: ð14Þ

When ΛNP < 3.6 × 1012 GeV, Vmin becomes positive and
for ΛNP < 3.1 × 1012 GeV the maximum and minimum
disappear. Thus the stability of the standard model can be
modified by new physics at the scale 1012 GeV.
If we vary the Higgs boson and top masses in the

standard model, we can compute the boundary of absolute
stability. This bound is shown in Fig. 3. The dotted lines
show where Vmin becomes positive when in the presence of
O6 for the indicated value of ΛNP. Unexpectedly, we find
that three independent conditions (i) that Vmin goes to zero,
(ii) that Eq. (5) has no solution, and (iii) that Vmin goes
positive when ΛNP ¼ MPl all give nearly identical boun-
daries in the mpole

h /mpole
t plane. Knowing that quantum

gravity is relevant at MPl, we should therefore be cautious
about giving too strong of an interpretation of the pertur-
bative absolute stability bound in the SM. We also show
in this plot the metastability bound, that the lifetime of
our vacuum be larger than the age of the Universe. At
lowest order this translates to λð1=RÞ−1 < −14.53þ
0.153 ln½RGeV� for all R [30]. Since λðμÞ is gauge
invariant, so is this criterion. Although for the standard
model this approximation is probably sufficient, it has not
been demonstrated that the bound can be systematically
improved in a guage-invariant way [31].

2 loops, traditional method (Landau gauge)

1–loop, traditional method
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FIG. 2 (color online). Gauge dependence of the instability scale
ΛI , defined by VðΛIÞ ¼ 0, at 1 loop in the traditional approach.
There is no known way to make this scale gauge invariant.
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In this Letter, we have only discussed a single physical
feature of the effective action: the value of the effective
potential at its extrema. There is of course much more
content in the effective action, especially when temperature
dependence is included. Unfortunately, many uses of the
effective action involve evaluating it for particular field
configurations, a procedure that has repeatedly been shown
to be gauge dependent. For example, the gauge dependence
of various quantities associated with the electroweak phase
transition was discussed [16] and various predictions of
Higgs inflation models [32] in [17].
Since observables such as the gravitational wave spec-

trum or the size of tensor fluctuations in the cosmic
microwave background can in principle be predicted within
quantum field theory, it should be possible to at least set up
such calculations in a way that does not depend on arbitrary
gauge or scale choices in the effective action. Questions
which involve other parts of the effective action besides the
potential provide new opportunities for cancellation. For
example, after the Z factors are added according to the LSZ
reduction theorem, S-matrix elements calculated from the
effective action are appropriately invariant. It would be
interesting to see perturbative demonstrations of the gauge
invariance of other derived quantities from the effective
action.
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