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The superfluid-crystal quantum phase transition of a system of purely repulsive dipolar bosons in two
dimensions is studied by quantumMonte Carlo simulations at zero temperature. We determine freezing and
melting densities and estimate the energy per unit length of a macroscopic interface separating the two
phases. The results rule out the microemulsion scenario for any physical realization of this system, given
the exceedingly large predicted size of the bubbles.
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The phase diagram of an assembly of spin-zero Bose
particles in two dimensions (2D), interacting via the purely
repulsive pairwise potential VðrÞ ¼ D=r3, has been the
subject of much theoretical investigation over the past
decade [1,2]. The quantum-mechanical Hamiltonian, in
dimensionless form, reads as follows:

Ĥ ¼ −
1

2

XN
i¼1

∇2
i þ

X
i<j

1

jri − rjj3
: ð1Þ

All lengths are expressed in terms of a≡mD=ℏ2, m
being the particle mass [3], whereas the energy unit is
ϵ0 ≡ ℏ2=ma2 ¼ D=a3. The physics of this model at tem-
perature T ¼ 0 is controlled by a single parameter, i.e., the
density ρ.
The many-body Hamiltonian (1) is of fundamental

interest for a number of reasons, from the effect of the
interactions (neither short nor truly long ranged in 2D) on
the superfluid properties [4] to the microscopic character of
the quantum (i.e., T ¼ 0) phase transition from a superfluid
to an insulating crystal, which remains to be elucidated.
A general argument has been proposed [5] to the effect

that no conventional first-order phase transition can occur
in such a system in 2D. Specifically, in the presence of an
interaction falling off as 1=r3, the coexistence of two
phases of different density (crystal and superfluid) sepa-
rated by a macroscopic interface is energetically unfavor-
able. The system can lower its energy by forming a
microemulsion, featuring large solid clusters (or “bubbles”)
floating in the superfluid. At low temperature, bubbles are
predicted to arrange themselves into a lattice superstruc-
ture, owing to their large mass, in essence giving rise to a
“supersolid” phase [6].
This intriguing prediction could in principle be tested

experimentally, as there exist a number of possible physical
realizations of (1). For example, ultracold assemblies of
Rydberg-excited atoms [7] can be confined to 2D by means
of an external harmonic trap; upon aligning their electric

dipole moments in the direction perpendicular to the plane
of confinement by means of an external electric field, the
interaction between any two particles is VðrÞ ¼ D=r3,
where D in this case is proportional to the square of the
dipole moment. However, (1) is also apt to describe a
system of indirect excitons in semiconductor quantum
wells [8].
The ground state phase diagram of (1) has been studied

by computer simulations [9–11], which have identified a
low-density superfluid and a high-density crystalline phase,
but yielded no evidence of the microemulsion proposed in
Ref. [5]. Indeed, there is an aspect of the argument
furnished therein that has not yet been fully clarified (or
even addressed) quantitatively, despite its obvious exper-
imental (or simulational) relevance, namely that of the
typical size R of the bubbles in the microemulsion. It can be
shown that [12]

R ¼ d exp

�
γb
γd

�
; ð2Þ

where d is a characteristic length, γd ¼ ϵ0a3ðρS − ρLÞ2, ρS
and ρL are the melting and freezing densities, and γb is the
energy per unit length of a macroscopic interface. The
length d depends on the geometry and on the specific
physical settings, but can be generally expected to be a few
times the average interparticle spacing [12].
To our knowledge, no estimates are presently available

of either γb or γd (in any case, not of accuracy sufficient to
estimate R reliably); because of its exponential dependence
on the ratio of these two quantities, R could be conceivably
extremely large, rendering the microemulsion scenario of
academic interest only. Indeed, this was suggested to be the
case for a 2D Coulomb system [13], for which a similar
prediction had been made [14,15].
In this Letter, we provide robust numerical evidence that

even for the “marginal” 1=r3 interaction, the size of the
system needed to observe the microemulsion greatly
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exceeds anything even imaginable, much less experimen-
tally accessible, for any realistic value of a. Specifically, by
means of ground state quantum Monte Carlo simulation,
we compute ρS and ρL and estimate γb. Even making
allowance for the statistical and systematic uncertainties
affecting our calculation, the results show that γb is as much
as four orders of magnitude greater than γd, largely due to
the remarkable narrowness of the coexistence region. Thus,
for all practical purposes, the quantum phase transition
occurring in this system can be regarded as a conventional
first-order one.
We reached the above conclusion by studying the zero-

temperature phase diagram of (1) by means of computer
simulations, based on the Path Integral Ground State
(PIGS) method [16], which is particularly well suited to
investigate the ground state of Bose systems. It is essen-
tially a variational approach [17], in which an arbitrarily
accurate approximation to the ground state wave function is
obtained as

ΨðΛÞ ¼ expð−ΛĤÞΨT ð3Þ
as Λ → ∞,ΨT being a trial wave function. In this work, we
use

ΨT ¼ exp

�
−
X
i<j

uðrijÞ
�
× exp

�
−α

XN
i¼1

ðjri −bij2Þ
�
: ð4Þ

Here, the Jastrow pseudopotential u is optimized as
described in Ref. [18], whereas b1;…;bN are the sites
of a 2D triangular lattice at which particles are “pinned," if
the variational parameter α ≠ 0, in which case the wave
function explicitly breaks translational invariance, i.e.,
corresponds to a crystalline ground state. On the other
hand, if α ¼ 0, ansatz (4) is translationally invariant and apt
to describe a superfluid.
In principle, in the limit Λ → ∞, the PIGS algorithm

should extract the true ground state wave function for a
Bose system regardless of which (positive-definite) initial
trial wave function ΨT is chosen. In practice, a finite
projection time Λ is used; hence, the physics of the
projected state generally reflects that of the trial wave
function. Thus, the energy expectation value is lower at low
density on setting α ¼ 0 in ΨT , as the system is in the
superfluid phase, whereas the crystalline ansatz (α ≠ 0)
yields a lower energy at high density.
On approaching the coexistence region from the high-

and low-density sides, the pressure P and chemical
potential μ for the two phases become equal at the two
densities ρS (melting) and ρL (freezing), i.e., the condition
of phase equilibrium. In the case of power law-type
interactions, pressure and chemical potential can be
obtained from the total and potential energy per particle,
as one can show using the virial theorem [19]. In particular,
one has

P
ρ
¼ eþ 1

2
v ð5Þ

and μ ¼ eþ P=ρ, where e and v are the total and potential
energy per particle, which are directly accessible by
simulation.
We carried out simulations of systems comprising up to

N ¼ 400 particles, enclosed in a rectangular cell capable of
accommodating a perfect triangular lattice [20], with
periodic boundary conditions. A typical value of the
projection time utilized is Λ ∼ 1=ðρa2ϵ0Þ; we used the
primitive approximation for the short-time propagator, with
a time step τ ∼ 10−3Λ.
An important aspect of the calculation, given that the

interaction among particles is not short ranged, consists of
estimating the contribution Δv to the potential energy per
particle arising from particles outside the largest distance rc
allowed by the simulation cell. We do that by fitting the tail
of the pair correlation function gðrÞ for the largest system
size to a damped oscillation around unity [21] and obtain
Δv as πρ

R∞
rc
drrgðrÞr−3.

We assess combined statistical and systematic errors of
our energy estimates, due to a finite projection time, finite
time step, and finite system size, to amount to no more than
a fraction 5 × 10−5 of the energy value. The only previous
study with which we can directly compare our results is that
of Astrakharchik et al., who studied the ground state of (1)
using the diffusion Monte Carlo method [10]. Our energy
values extrapolated to the thermodynamic limit, as a
function of ρ, are consistently, significantly lower than
theirs, most notably in the crystalline phase [22].
Figure 1 shows computed values of the chemical poten-

tial and pressure for the two phases, for three different
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FIG. 1 (color online). Ground state chemical potential μ as a
function of pressure computed in the solid phase for systems
comprising N ¼ 144 (red), 256 (black), and 400 (blue) particles.
Dotted line is a fit to the values of μ for the liquid for the largest
system size, taken as reference [23]. Statistical errors on the
values of the pressure are smaller than symbol size. Straight lines
connecting points are only a guide to the eye.
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system sizes. The values for the liquid phase for the largest
system size considered here are taken as reference for
convenience [23]. Although the size dependence of the
results is still noticeable at N ¼ 144, the estimated inter-
section of the chemical potential of the two phases occurs at
the same pressure, within the statistical uncertainties of the
calculation, for a system withN ¼ 256 andN ¼ 400. Using
the results for the largest system and taking into account the
statistical error on the chemical potential in the liquid phase,
we locate the transition at ð7.8� 0.3Þ × 106 ϵ0a−2.
Having estimated the coexistence pressure, melting and

freezing densities can be deduced from the values of
pressure versus density for both phases, shown in Fig. 2.
The first observation is that the coexistence region is very
narrow. This conclusion is rather robust, as the data in the
figure show that the difference between liquid and solid
density is almost constant in a fairly wide region around the
location of the phase transition. Specifically, while ρS; ρL ¼
ð247� 4Þ a−2 (shaded region in inset), we can state with
high confidence that 0.17 a−2 ≤ ðρS − ρLÞ ≤ 0.24 a−2, i.e.,
0.03ϵ0a−1 ≤ γd ≤ 0.06 ϵ0a−1 [see Eq. (2)]. Our determined
freezing and melting densities are not inconsistent with
results of previous studies [9–11], although the very large
uncertainties quoted therein render a direct comparison
scarcely meaningful.
The computed values of ρL and ρS suggest d ∼ a in

Eq. (2); however, assessing the characteristic size R of a
“bubble” in the speculated microemulsion requires knowl-
edge of the energy per unit length γb of a macroscopic
interface separating the two phases at coexistence. In order
to obtain an estimate for γb, we follow a procedure similar

to that of Ref. [24], i.e., carry out a separate simulation of
an actual interface.
The setup is shown in Fig. 3. We use an elongated cell of

sides L and L0 ≈ 2.85L and divide it into two regions
(rightmost panel), one occupied by liquid, the other by
solid, separated by an interface of length L [25]. The
density ρ0 is chosen for simplicity to be the same for both
phases. We simulated systems with a total number of
particles N between 168 and 474 for values of ρ0 inside and
near the coexistence region. We stabilize the interface by
making the parameter α in the wave function (4) dependent
on the position; i.e., we set it to zero in half of the cell,
where particles are allowed to wander about, and to a finite
value in the other half, where particles are pinned at
lattice sites.
Concurrently, we also performed simulations with the

same geometry but with only one of the two phases and the
same density ρ0 (leftmost and middle panel of Fig. 3). We
project in all cases for an imaginary time interval Λ ¼
5 × 10−3ϵ−10 and estimate the energy of the interface as

Lγb ¼
1

2
½EI − NSeS − ðN − NSÞeL�; ð6Þ

where the factor 1=2 comes from the presence of two
interfaces [25], EI is the total energy of the simulated
system with the interface, and eL (eS) is the energy per
particle in the liquid (solid) phase, computed in the separate
simulations of homogeneous systems. For this part of the
study, given the inhomogeneity of the system and the shape
of the simulation cell, we computed the contribution to the
potential energy associated to particles beyond the maxi-
mum distance allowed by the cell also by means of an
explicit summation of contributions from particle images in
adjacent cells, up to a maximum distance of 10 L;
contribution from particles at greater distances was esti-
mated by assuming gðrÞ ¼ 1 and integrating from 10 L to
infinity. As it turns out, this procedure yields results

FIG. 2 (color online). Density versus pressure for both the
crystal (dark symbols and lines) and the liquid (light symbols and
lines) phases. Open symbols refer to results for a system with
N ¼ 144 particles, filled symbols to one with n ¼ 400 particles.
Statistical errors are smaller than symbol size. Values in the liquid
phase for the largest system are taken as reference. (Inset)
Expanded view of the region in which phase transition is
estimated to occur (shaded area). Blowup shows density jump
corresponding to liquid-solid transition.

liquid solid interface

FIG. 3. One-body density profiles pertaining to simulations of
the system in the liquid (left) and solid (middle) phases, as well as
of an interface between the two phases (right).
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compatible with those furnished by that described above,
utilized for the homogeneous phases.
The value of γb obtained in this way is 1600 ϵ0a−1, at

ρ0 ¼ 0.247 a−2; our assessment of combined statistical and
systematic errors is at no more than 10% of this value. This
results into an order of magnitude estimate of the ratio
γb=γd ∼ 104, which in turn makes R infinite for all practical
purposes, based on Eq. (2).
A few comments are in order:
(i) Only a reliable order-of-magnitude estimate for γb is

needed, given the narrowness of the coexistence region. It
is interesting to note that if the coexistence region were as
wide as allowed, for instance, by the calculations of
Refs. [9,10] (∼30–100 a−2), then our estimate for γb would
lead to an entirely different physical conclusion, as R ∼ d in
that case.
(ii) The methodology adopted here is in principle

unbiased, even though it does require an input trial wave
function. The most important sources of systematic error of
this calculation are the finite size of the simulated system
and the finite projection time. Simulation of a system with
N ¼ 168, with eight rows of six particles each pinned at
lattice sites, yields the same interface energy per unit length
obtained for a system of N ¼ 474 particles, within stat-
istical uncertainties. The fact that the estimate of γd does
not change on (almost) tripling the system size constitutes
in our view strong evidence of its robustness. Furthermore,
full extrapolation in projection time for the smaller system
shows that the bias incurred at Λ ¼ 5 × 10−3ϵ−10 is less
than 40 ϵ0a−1.
(iii) The energy of the interface EI is approximately

0.03% of the total energy of the system. Its value is
insensitive to the relative numbers of particles in the two
phases because the energies eS and eL are very close at the
density ρ0 considered here, as well as at coexistence. It is
interesting to compare it with that obtained in Ref. [24] for
3D 4He, where it was found that the energy per atom of the
interface (assumed to consist of a single atomic plane) is
worth approximately 15% of the atomic kinetic energy in
the superfluid, at coexistence. The same estimate yields 5%
in our case.
(iv) The assumption of equal density for the coexisting

phases is made for convenience and is justified by the
narrowness of the coexistence region. It allows one to
isolate the energetic contribution of the surface tension, i.e.,
to estimate γb through Eq. (6). The estimate of γb arrived at
through the procedure outlined above is rather insensitive
to the value of ρ0 chosen; for example, on performing the
calculation with ρ0 ¼ 237 a−2, we obtain γb ≈ 1500 ϵ0a−1.
The pair correlation function gðrÞ for the two coexisting
phases is shown in Fig. 4, for the case ρ0 ¼ 237a−2.
Summarizing, by means of accurate quantum

Monte Carlo simulations, we have determined melting
and freezing densities of a 2D system of spin-zero bosons
interacting via a purely repulsive potential of the form

VðrÞ ¼ D=r3 and evaluated the energy per unit length of a
macroscopic interface separating coexisting superfluid and
crystalline phases. The width of the coexistence region is
remarkably small, of the order of 0.01% of the freezing
(melting) density. The most important implication is that
the characteristic size of the bubbles that should constitute
the microemulsion, a physical scenario proposed in Ref. [5]
as energetically competitive with simple coexistence,
exceeds anything experimentally accessible, given the
assessed value of the interfacial energy.
Thus, for all practical purposes, a conventional first-

order phase transition between the superfluid and crystal-
line phases is all that can be observed either experimentally
or in simulations for a system of this kind. More generally,
any evidence of “bubble” phases in numerical simulations
should be carefully assessed, especially when not supple-
mented by quantitative estimates of melting and freezing
density, as well as of the interfacial energy.
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