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Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of
coherent quantum control and information processing. In this spirit, we consider strongly dissipative
quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic
coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a
weak, time-rescaled, Hamiltonian term into the system’s Liouvillian. The effective long-time dynamics is
governed by a projected Hamiltonian which results from the interplay between the weak unitary control and
the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term
is suppressed by an environment-induced symmetrization of the dynamics. We present applications to
quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of
nonadiabatic errors.
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Introduction.—Weak coupling to the environmental
degrees of freedom is often regarded as one of the
essential prerequisites for realizing quantum-information
processing. In fact, decoherence and dissipation generally
spoil the unitary character of the quantum dynamics and
induce errors into the computational process. In order to
overcome such an obstacle, a variety of techniques have
been devised including quantum error correction [1],
decoherence-free subspaces (DFSs) [2,3], and noiseless
subsystems [4,5]. However, recently, it has been realized
that dissipation and decoherence may even play a positive
role to the aim of coherent quantum manipulations.
Indeed, it has been shown that, properly engineered,
dissipative dynamics can, in principle, be tailored to
enact quantum-information primitives such as quantum
state preparation [6], quantum simulation [7,8], and
computation [9].
In this Letter, we investigate the regime where the

coupling of the system to the environment is very strong,
and the open system dynamics admits a nontrivial steady-
state manifold (SSM). We will show how, in the long time
limit, unitary manipulations, e.g., quantum gates, inside the
SSM can be enacted by adding a time-rescaled Hamiltonian
acting on the system only. This coherent dynamics is
governed by a sort of projected Hamiltonian which results
from the nontrivial interplay between the weak unitary
control term and the strong dissipative process. The latter
effectively renormalizes the former by continuously pro-
jecting the system onto the steady-state manifold and
adiabatically decoupling the nonsteady states. Several of
the results of this Letter can be regarded as a rigorous
formulation and significant extension of ideas first explored
in [10] and [11]. Wewould also like to point out the relation
to techniques relying on some type of quantum Zeno

dynamics [8,12–14]. The latter can, in fact, be regarded
as a special case of our general result (3).
This Letter is organized as follows: First, we set the stage

of our analysis and describe the main theoretical ideas and
results. Then, we discuss in detail, aided by numerical
simulations, a few different models demonstrating dissi-
pation-assisted computation over SSMs comprising
decoherence-free subspaces and noiseless subsystems.
For the reader’s convenience, we have collected back-
ground technical material and all the mathematical proofs
in [15].
Evolution of steady state manifolds.—In the following,

H ½dimðHÞ < ∞� will denote the Hilbert space of the
system and LðHÞ the algebra of linear operators over it.
A time-independent Liouvillian superoperator L0 acting on
LðHÞ is given. The SSM of L0, comprises all the quantum
states ρ contained in the kernel KerL0 ≔ fX=L0ðXÞ ¼ 0g
of L0. We will denote by P0 (Q0 ≔ 1 − P0) the spectral
projection over KerL0 (the complementary subspace of
KerL0.). One has that P2

0 ¼ P0 and P0L0 ¼ L0P0 ¼ 0;
notice, also, that P0 may not be Hermitian. The Liouvillian
L0 is also assumed to be such that: (a) the equation

Eð0Þ
t ≔ etL0 , (t ≥ 0) defines a semigroup of trace-preserving

positive maps with jjEð0Þ
t jj ≤ 1 [16]; (b) The nonzero

eigenvalues λh, (h > 0) of L0 have negative real parts,

i.e., the SSM is attractive. In this case, P0 ¼ limt→∞E
ð0Þ
t .

On top of the process described by L0, we now
add a control Hamiltonian term K ≔ −i½K; ·�, where
K ¼ K† ¼ T−1 ~K. The time T is a scaling parameter that,
in the spirit of the adiabatic theorem, will be eventually sent
to infinity. If jj ~Kjj ¼ Oð1Þ, then jjKjj ≤ 2jjKjj ¼ Oð1=TÞ.
The basic dynamical equation we are going to study is the
following:
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dρðtÞ
dt

¼ ðL0 þKÞρðtÞ ≕ LρðtÞ: ð1Þ

Notice that, even if we are not assuming that L0 is of the
Lindblad type [17], i.e., the Et ≔ etL being completely
positive (CP) maps, our basic equation (1) is set time-local
and, in this sense, Markovian. The system is also strongly
dissipative in the sense that, for large T, the dominant
process is the one ruled by L0. If the system is initialized in
one of its steady states, on general physical grounds one
expects the system, for small 1=T, to stay within the SSM
with high probability. However, for L0 with a multidimen-
sional SSM, a nontrivial internal dynamics may unfold.
In order to gain physical insight on this phenomenon, we

would, first, like to provide a simple argument based on
time-dependent perturbation theory. Equation (1) immedi-
ately leads to _Et ¼ ðL0 þKÞEt for the evolution semi-
group. We can formally solve this equation by
Et ¼ etL0ð1þ R

t
0 dτe

−τL0KEτÞ from which, by iteration,
it follows the standard Dyson expansion with respect to
the perturbation K. Considering terms up to the first
order applied to P0 and inserting the spectral reso-
lution P0 þQ0 ¼ 1, one obtains P0 þ tP0KP0þ
ðetL0 − 1ÞSKP0, where S ≔ −

R∞
0 dtetL0Q0 is a pseudoin-

verse of L0, i.e., L0S ¼ SL0 ¼ Q0. The norm of the third
term is upper bounded by OðjjKjjjjSjjÞ uniformly in
t ∈ ½0;∞Þ. It follows that scaling K by T−1, over a total
evolution time t ¼ T the first and second term above are
Oð1Þ, while the third one—the only one involving tran-
sitions outside the steady state manifold—is OðjjSjj=TÞ.
This demonstrates that, at this order of the Dyson expan-
sion, the dynamics is ruled by an effective generator
P0KP0 whose emergence is basically due to a Fermi
golden rule mechanism. Moreover, by looking at the
structure of the Liouvillian pseudoinverse S [15], we see
that jjSjj ¼ OðτRÞ, where τ−1R ≔ minh>0jℜλhj, and the λh’s
are the nonvanishing eigenvalues of L0 [15]. The meaning
of this quantity is that the time scale τR sets a lower bound
to the relaxation time of the irreversible process described
by L0. Since jj ~Kjj ¼ Oð1Þ, if no nilpotent blocks are
present in the spectral resolution of L0 [18], the leakage
outside the SSM becomes negligible when

T ≫ τR; ð2Þ
namely, when the timescale T is much longer that the
relaxation time τR, i.e., dissipation is much faster than the
coherent part of the dynamics. Systemspecific examples of (2)
will be given later when concrete applications are discussed.
Now,wepresent ourmain technical result on the projected

dynamics over SSMs (see [15] for the proof’s details)

jjETP0 − e ~KeffP0jj ¼ Oð1=TÞ; ð3Þ
where ~Keff ≔ P0

~KP0 and ET denotes the evolution over [0,
T] generated by L0 þ T−1 ~K. It should be stressed that (3) is

based just on degenerate perturbation theory for general
linear operators [18]. In particular, it does not rely on the
assumption that L0 can be cast in Lindblad form [17] or on
the SSMstructure described in [19]. An immediate corollary
of (3) is that jjQ0ETP0jj ¼ Oð1=TÞ, namely, the probability
of leakingoutsideof theSSM, inducedby theunitary termK,
for large T, is smaller than cT−1. The constant c controls the
strength of the deviations from the ideal adiabatic behavior at
finite T [the rhs of (3)], and it can be related to the spectral
structure of S. Roughly speaking, one expects c, and,
therefore, violations of adiabaticity to increase when the
dissipative gap τ−1R decreases. However, a subtler interplay
between the gap with the matrix elements of Q0KP0 may
play an important role here as well in the information
geometry of SSM [20].
Let us now turn to the structure of the effective generator

~Keff . Of course, it crucially depends on the projection P0

that, in turn, depends on the nature of L0. Here, we discuss
two (nonmutually exclusive) cases. Their physical relevance
relies on the importance, both theoretical and experimental,
of the concepts of decoherence-free subspaces [2] and
noiseless subsystems (NSs) [4] in quantum information.
(i) The most general dissipative generator L0 of a

Markovian quantum dynamical semigroup Et ≔ etL0 can
be written as L0ðρÞ ¼ ΦðρÞ − 1

2
fΦ�ð1Þ; ρg where Φ is a CP

map and Φ� is the dual map, i.e., ΦðXÞ ¼ P
iAiρA

†
i ⇒

Φ�ðXÞ ¼ P
iA

†
i ρAi [17]. We now assume that Φ is trace

preserving [Φ�ð1Þ ¼ 1] and unital [Φð1Þ ¼ 1]. Under these
assumptions, whence KerL0 coincides with the set of fixed
points ofΦ, the latter is known to be the commutantA0 [21]
of the interaction algebra A generated by the Kraus
operators Ai and their conjugates [22]. From [21], it follows
that the SSM ofL0 is

P
Jn

2
J dimensional and is given by the

convex hull of states of the formωJ ⊗ 1dJ=dJ where ωJ is a
state over the noiseless-subsystem factor CnJ. If, for some
J, dJ ¼ 1, one has that the corresponding CnJ is a DFS and
the SSM contains pure states. Conversely, if dJ > 1, (∀J),
then no pure states are in the SSM. A characterization of the
algebraic structure of SSMs for L0’s of the Lindblad form
[17] is provided in [19].
Now P0 is the projection onto the commutant algebra

[21] and one can check that ~Keff jKerL0
¼ −i½ ~Keff ; ·� where

~Keff ≔ P0ð ~KÞ [23]. By definition, ½ ~Keff ; U� ¼ 0 for all the
unitaries in A, namely, the effective dynamics admits, as a
symmetry group, the full-unitary group of the interaction
algebra A. This means that the renormalization process
~K ↦ ~Keff ∈ A0 amounts to an environment-induced sym-
metrization of the dynamics [24]. From [21], it also follows
that ~Keff has a nontrivial action just on the noiseless
subsystems of A; the symmetrization process dynamically
decouples the system from the noise process driven by
operators in A [11,24].
(ii) Suppose there exists a subspace C ⊂ H such that

KerL0 ⊃ LðCÞ ≔ spanfjϕiihϕjj=jϕii ∈ Cg. In particular,
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jψi ∈ C ⇒ L0ðjψihψ jÞ ¼ 0, i.e., C is a DFS [2] for the
unperturbed L0. Also, if P0ðjϕihϕ⊥jÞ ¼ P0ðjϕ⊥ihϕjÞ ¼ 0

holds for all jϕi ∈ C and jϕ⊥i ∈ C⊥, a simple calculation
shows that P0

~KP0jLðCÞ ¼ −i½Π ~KΠ; ·�, where Π is the
orthogonal projection over C [25].
Remarkably, in all cases (i)–(ii) above, we see that the

induced SSM dynamics e ~Keff is unitary and governed by
a dissipation-projected Hamiltonian. Qualitatively: this
coherent dynamics results from the interplay between the
weak (slow) Hamiltonian K ¼ T−1 ~K and the strong (fast)
dissipative term L0. The former induces transitions out of
the SSM, while the latter projects the system back into it on
a much faster timescale. As a result, nonsteady states of the
Liouvillian are adiabatically decoupled from the dynamics
up to contributions Oð1=TÞ. Now, we would like to make a
few important remarks.
(1) By defining ~ρðtÞ ≔ U†

t ½ρðtÞ�, Eq. (1) gives rise to a
dynamical equation of the form d~ρðtÞ=dt ¼ Lt½~ρðtÞ�, where
Lt ≔ U†

t ∘L0∘U t and U tðXÞ ≔ e−itKXeitK . Namely, in this
rotated frame, ~ρðtÞ evolves in a time-dependent bath
described byLt. This establishes a connection of the present
approach to the one with time-dependent baths in [10]
and [11]. Smallness of K in the picture (1) translates into
slowness of the bath time dependence in the rotated frame.
(2) The environment-induced renormalization ~K ↦

~Keff ¼ P0KP0 is not an algebra homomorphism; this
implies that the algebraic structure of a set of projected
Hamiltonians may differ radically from the algebraic
structure of the original (unprojected) ones. In particular,
commuting (noncommuting) ~K’s may be mapped onto
noncommuting (commuting) ~Keff , this implying a potential
increase (decrease) of their ability to enact quantum control
[11,14]. Also, notice that the Hamiltonian locality structure
may be affected by the projection, e.g., a 1-local K may
give rise to a 3-local Keff . The dissipative technique
discussed here might then be exploited to effectively
generate nonlocal interactions out of simpler ones in a
fashion similar to perturbative gadgets [26] (see also [8]).
(3) Any extra term V, either Hamiltonian or dissipative,

in the Liouvillian such that P0VP0 ¼ 0 will not contribute
to the effective dynamics (3) in the limit in which L0

dominates. For example, in case (ii) discussed in the
above, the projected dynamics does not change by per-
turbing K with any extra Hamiltonian term K0 such
that jjK0jj ¼ Oð1=TÞ and P0ðK0Þ ¼ P

JTrdJðΠJK0ΠJÞ ⊗
1dJ=dJ ¼ 0 [here ΠJ is the projector 1nJ ⊗ 1dJ of the Jth
summand in [21]]. The projected dynamics has a degree of
resilience against perturbations that are eliminated by the
environment-induced symmetrization.
(4) If the interaction algebra A in (ii) is Abelian, then,

from [21], one finds P0ðKÞ ¼
P

JΠJKΠJ. This shows that
quantum Zeno dynamics and the associated control and
computation techniques of Refs. [12–14] can be regarded
as a special case of the projection phenomenon described
by Eq. (3).

(5) When P0KP0 ¼ 0, the Dyson series for Et shows
that, EtP0 ¼ 1 − tP0KSKP0 þOðjjKjjjjSjjÞ. This means
that the dynamics inside the SSM is now ruled by the
second-order effective generator Leff ≔ −P0KSKP0,
[up to errors OðτRjjKjjÞ]. This dynamics is, in general,
nonunitary, and its effective relaxation time can be
roughly estimated by τeffR ¼OðjjLeff jj−1Þ¼Oðτ−1R jjKjj−2Þ¼
τRO(ðτRjjKjjÞ−2)≫τR. Notice the counterintuitive fact that
the stronger the dissipation outside the SSM, the weaker the
effective one inside [10].
Unitaries over a DFS.—Here, we show how to perform

coherent manipulations on a logical qubit built upon the
SSM of four qubits which comprises a DFS [2]. Consider
the following unperturbed Liouvillian:

L0ðρÞ ¼
X

α¼x;y;z

γα

�
SαρSα† −

1

2
fSα†Sα; ρg

�
; ð4Þ

where Sα ¼ P
N
j¼1 S

α
j are collective spin operators and γα

decoherence rates. The interaction algebra A generated by
the Sα’s is the algebra of permutation invariant operators
[4]. Therefore, from (i), it follows that KerL0 has the
structure [21] where J is now a total angular momentum
label, dJ ¼ 2J þ 1 and the nJ’s are the dimensions of
irreducible representations (irreps) of the permutation group
SN [27]. For N ¼ 4, the one-dimensional J ¼ 0 represen-
tation shows with multiplicity two. If we denote by C this
two-dimensional subspace, the conditions in (ii) are met.
Let us denote with Π the projector onto C. It is known

that one can construct a universal set of gates in similar
DFSs (see, e.g., [28]) when the dynamics is entirely
contained in the DFS. Here, we show that coherent
manipulation is also possible when the dynamics leaks
out of the DFS. Consider, for example, the following
Hamiltonian perturbations Hx ¼ 3

2
ðσz1σz2 þ σz2σ

z
3Þ þ 1 and

Hz ¼ −ð ffiffiffi
3

p
=2Þðσz1σz2 − σz2σ

z
3Þ þ σz1. One can check that, in

the logical space C, such Hamiltonians reduce to elemen-
tary Pauli operations, i.e., ΠHαΠ ¼ σα. We now build the
perturbed Liouvillians Lα ¼ L0 − iϑ=T½Hα; ·�, α ¼ x; z, let
us also denote ~Kα

eff ¼ −iϑP0½Hα; ·�P0 with ϑ free param-
eter. In Fig. 1, we show a numerical experiment confirming
our general theorem Eq. (3) for such Lα. In the logical qubit

space, the effective evolution e ~Kα
eff is a unitary evolution

e ~Kα
eff ðXÞ≃ uαXuα† with uα ¼ expð−iϑσαÞ, and one can

easily generate any unitary in SU(2) by concatenating
such gates. Moreover, the bound in Eq. (3) implies
that, for any vectors jii, jji in the logical space

C, jjðET − e ~Keff ÞðjiihjjÞjj ≤ jjðET − e ~Keff ÞP0jj ¼ Oð1=TÞ,
showing that, effectively, one can generate unitary gates
on the logical qubit space C up to an error 1=T. In view of
remark (3), one is allowed to add to Lα any perturbation V
satisfying P0VP0 ¼ 0 and still obtain the same unitary
gates uα within an error c=T albeit with a possibly different
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c [29]. In [15], we also show the stability of this dynamics
against certain dissipative perturbations of L0. Figure 1
shows that the whole 14 dimensional SSM is evolving
unitarily in the long time limit.
To illustrate our results, let us consider the experimental

DFS system, studied in [3], consisting of a couple of
trapped 9Beþ ions subject to collective dephasing [γx;y ¼ 0
in (4)]. In this case, τR ∼ 5 μs, and (assuming a similar
relaxation time for a four qubits system) Eq. (2) and Fig. 1
show that, for T ∼ 500 μs, one should observe small
deviations of the effective dynamics from unitarity.
Unitaries over noiseless subsystem.—Next, we discuss

dissipation-assisted computation over noiseless subsystems
[4]. The Liouvillian is in the class previously dis-
cussed, L0ðρÞ¼ΦðρÞ−ρ, taking ΦðρÞ ¼ 1

3

P
3
α¼1UαρU

†
α,

Uα ¼ eiϕαSα , where Sα are again collective spin operators.
For generic ϕα’s, the SSM coincides with one of the former
examples, i.e., rotationally invariant state. The latter, for an
odd number N of spins, contains only mixed states. As
perturbation, we use the following Hamiltonian H ¼ σx1σ

x
2

and the full Liouvillian reads L ¼ L0 − iϑ=T½H; ·�. Again,
one observes an effective unitary evolution, up to an
error Oð1=TÞ, (see Fig. 1 right panel) over the full five-
dimensional SSM; in particular, this construction can be
seen as a scheme to enact dissipation-assisted control over
the noiseless subsystem C2 factor [11].
In [5], noiseless subsystems have been realized in a

NMR system comprising three nuclear spins subject to
collective (artificial) noise; for a relaxation time τR <
1=30 s the noiseless encoding provides an advantage.
Figure 1 shows that setting the operation time, say at
T ¼ 100τR, then effective dynamics over the NSs becomes
very close to a unitary one.
Finally, we would like to stress that the Markovian form

(1) is just sufficient (and mathematically convenient)
enough to prove the existence of an effective projected
dynamics, but not necessary. The spin-boson Hamiltonian
discussed in [15] indicates that the relevant dynamical
mechanism is the existence of a strong system-bath

coupling that adiabatically decouples nonsteady states from
the dynamics.
Conclusions.—In this Letter, we have shown how an

effective unitary dynamics can be enacted over the mani-
fold of steady states of a strongly dissipative system. The
strategy is to introduce a small time-rescaled Hamiltonian
term in the system’s Liouvillian largely dominated by the
dissipative processes. In the long time limit, the dynamics
leaves the steady state manifold invariant and becomes
unitary up to a small error whose strength is connected to
the Liouvillian relaxation time and total operation time.
The effective Hamiltonian ruling the long time dynamics
is shaped by the continuous interplay of the weak
Hamiltonian control with the fast relaxation process that
adiabatically decouples nonsteady states. This effective
projected Hamiltonian, in some cases, can be seen as a
symmetrized form of the bare one, and it is robust against
all perturbations, dissipative or Hamiltonian, that are
filtered out by this environment-induced symmetrization.
To illustrate these ideas, we have shown how to realize

quantum gates on steady-state manifolds comprising
decoherence-free subspaces [2] as well as noiseless sub-
systems [4]. In all these cases, we have also provided a
numerical estimate of the deviations from the ideal long-
time unitary behavior and the actual, finite time one.
Agreement with the theoretical prediction (3) is found in
all cases.
The results of this Letter seem to suggest the intriguing

possibility of fighting quantum decoherence by introducing
even more quantum decoherence.

This work was partially supported by the ARO MURI
Grant No. W911NF-11-1-0268 and by NSF Grant
No. PHY-969969. Useful input from S. Garnerone, J.
Kaniewski, D. Lidar, I. Marvian, and S. Muthukrishnan
is gratefully acknowledged.

[1] Quantum Error Correction, edited by D. A. Lidar and
T. Brun (Cambridge Univesity Press, Cambridge, England,
2013).

[2] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997);
P. Zanardi, Phys. Rev. A 57, 3276 (1998); D. A. Lidar, I. L.
Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594
(1998).

[3] D. Kielpinski et al., Science 291, 1013 (2001).
[4] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84,

2525 (2000); P. Zanardi, Phys. Rev. A 63, 012301 (2000).
[5] L. Viola et al., Science 293, 2059 (2001)
[6] M. J. Kastoryano, F. Reiter, and A. S. Sorensen, Phys. Rev.

Lett. 106, 090502 (2011).
[7] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,

M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.
Blatt, Nature (London) 470, 486 (2011).

[8] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl,
M. Dalmonte, and P. Zoller, Phys. Rev. Lett. 112, 120406
(2014).

FIG. 1 (color online). Distance of the effective evolution from
the exact evolution as a function of 1=T. Left panel: DFS example
with L0 given by Eq. (4). We used γα ¼ 1 and ϑ ¼ 1 (see text for
details). Right panel: example for noiseless subsystem with
parameters ϕj ¼ ϑ ¼ 1 (see text). The norm used is the maxi-
mum singular value of the maps realized as matrices over H⊗2.
The linear fits are obtained using the four most significant points.

PRL 113, 240406 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

240406-4

http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevA.57.3276
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevA.63.012301
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406


[9] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633
(2009).

[10] A. Carollo, M. F. Santos, and V. Vedral, Phys. Rev. Lett. 96,
020403 (2006).

[11] O. Oreshkov and J. Calsamiglia, Phys. Rev. Lett. 105,
050503 (2010).

[12] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A.
Lidar, Phys. Rev. Lett. 108, 080501 (2012).

[13] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.
Cataliotti, F. Caruso, and A. Smerzi, Nat. Commun. 5, 3194
(2014).

[14] D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S.
Pascazio, and K. Yuasa, arXiv:1403.5752

[15] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.113.240406 for details.

[16] In this Letter, unless otherwise stated, the norms for
superoperators M will be jjMjj ≔ supjjXjj1¼1jjMðXÞjj1.
For semigroups fEtgt≥0 of CP maps, one has jjEtjj ≤ 1.
jjXjj will denote the standard operator norm for X ∈ LðHÞ.

[17] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[18] T. Kato, Perturbation Theory for Linear Operators

(Springer, New York, 1995).
[19] B. Baumgartner and H. Narnhofer, J. Phys. A 41, 395303

(2008).
[20] L. Banchi, P. Giorda, and P. Zanardi, Phys. Rev. E 89,

022102 (2014).
[21] By definition A0 ≕ fX=½X;O� ¼ 0;∀ O ∈ Ag. Standard

structure theorems for C� algebras imply that
A0 ≅ ⨁

J
LðCnJ Þ ⊗ 1dJ , where J labels the irreducible

representations of A with dimension dJ and multiplicity

nJ [4]. In this case, P0ðXÞ ¼
R
dUUXU†, where the Haar-

measure integral is performed over the unitary group of the
algebra A.

[22] D.W. Kribs, Proc. Edinb. Math. Soc. 46, 421 (2003).
[23] If X¼P0ðXÞ, one has : P0

~KP0ðXÞ¼−iP0ð½ ~K;X�Þ ¼−iP0

ð ~KXÞþ iP0ðX ~KÞ¼−iP0ð ~KÞXþ iXP0ð ~KÞ¼−i½P0ð ~KÞ;X�.
Where we used, e.g., P0ð ~KXÞ ¼ P0ð ~KÞX valid as X is in
A0 [21].

[24] P. Zanardi, Phys. Lett. A 258, 77 (1999); 60, R729 (1999);
L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417
(1999).

[25] Let X ∈ LðCÞ, and consider P0
~KP0ðXÞ ¼ −iP0ð½ ~K;X�Þ.

One can write ~K ¼ Π ~K þQ ~K, where Q ≔ 1 − Π. There-
fore, P0ð ~KXÞ ¼ P0ðΠ ~KX þQ ~KXÞ ¼ Π ~KX ¼ ðΠ ~KΠÞX,
where we have used the properties of P0 assumed in the
main text and X ¼ ΠX. Considering now the X ~K term in the
commutator in the same way one finds P0ð½ ~K;X�Þ ¼
½Π ~KΠ; X� for all X ∈ LðCÞ.

[26] S. P. Jordan and E. Farhi, Phys. Rev. A 77, 062329
(2008); C. M. Herdman, K. C. Young, V.W. Scarola, M.
Sarovar, and K. B. Whaley, Phys. Rev. Lett. 104, 230501
(2010); B. Antonio and S. Bose, Phys. Rev. A 88, 042306
(2013).

[27] For N qubits, nJðNÞ ¼ ð2J þ 1ÞN!½ðN=2þ J þ 1Þ!
ðN=2 − JÞ!�−1.

[28] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys.
Rev. A, 63, 042307 (2001).

[29] L. Campos Venuti et al. (to be published).

PRL 113, 240406 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

240406-5

http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.108.080501
http://dx.doi.org/10.1038/ncomms4194
http://dx.doi.org/10.1038/ncomms4194
http://arXiv.org/abs/1403.5752
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.240406
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1103/PhysRevE.89.022102
http://dx.doi.org/10.1103/PhysRevE.89.022102
http://dx.doi.org/10.1017/S0013091501000980
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1103/PhysRevA.60.R729
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevA.77.062329
http://dx.doi.org/10.1103/PhysRevLett.104.230501
http://dx.doi.org/10.1103/PhysRevLett.104.230501
http://dx.doi.org/10.1103/PhysRevA.88.042306
http://dx.doi.org/10.1103/PhysRevA.88.042306
http://dx.doi.org/10.1103/PhysRevA.63.042307
http://dx.doi.org/10.1103/PhysRevA.63.042307

