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Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted
many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The
correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a
novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This
analysis, when applied to a large collection of human motion data, reveals a simple power-law interaction
that is based not on the physical separation between pedestrians but on their projected time to a potential
future collision, and is therefore fundamentally anticipatory in nature. Remarkably, this simple law is able
to describe human interactions across a wide variety of situations, speeds, and densities. We further show,
through simulations, that the interaction law we identify is sufficient to reproduce many known crowd
phenomena.
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In terms of its large-scale behaviors, a crowd of
pedestrians can look strikingly similar to many other
collections of repulsively interacting particles [1–4].
These similarities have inspired a variety of pedestrian
crowd models, including cellular automata and continuum-
based approaches [5–8], as well as simple particle or agent-
based models [9–15]. Many of these models conform to a
long-standing hypothesis that humans in a crowd interact
with their neighbors through some form of “social poten-
tial” [16], analogous to the repulsive potential energies
between physical particles. How to best determine the
quantitative form of this interaction potential, however, has
remained an open question, with most previous researchers
employing a simulation-driven approach.
Previously, direct measurement of the interaction law

between pedestrians has been confounded by two primary
factors. First, each individual in a crowd experiences a
complex environment of competing forces, making it
difficult to isolate and robustly quantify a single pairwise
interaction. Second, a pedestrian’s motion is strongly
influenced not just by the present position of neighboring
pedestrians, but by their anticipated future positions
[17–21], a fact which has influenced recent models
[22–25]. Consider, for example, two well-separated pedes-
trians walking into a head-on collision [Fig. 1(a)]. These
pedestrians typically exhibit relatively large acceleration as
they move to avoid each other, as would result from a large
repulsive force. On the other hand, pedestrians walking in
parallel directions exhibit almost no acceleration, even
when their mutual separation is small [Fig. 1(b)].
Here, we address both of the aforementioned factors

using a data-driven, statistical mechanics-based analysis
that accounts properly for the anticipatory nature of human
interactions. This approach allows us to directly and

robustly measure the interaction energy between pedes-
trians. The consistency of our measurements across a
variety of settings suggests a simple and universal law
governing pedestrian motion.
To perform our analysis, we turn to the large collections

of recently published crowd data sets recorded by motion
capture or computer vision-based techniques. These data
sets include pedestrian trajectories from several outdoor
environments [26,27] and controlled lab settings [28] (a
summary of data sets is given in the Supplemental Material
[29]). To reduce statistical noise, data sets with similar
densities were combined together, resulting in one Outdoor
data set comprising 1146 trajectories of pedestrians in
sparse-to-moderate outdoor settings, and one Bottleneck
data set with 354 trajectories of pedestrians in dense crowds
passing through narrow bottlenecks. In analyzing these
data sets, our primary tool for quantifying the strength
of interactions between pedestrians is the statistical-
mechanical pair distribution function, denoted g.
As in the typical condensed matter setting [35], here we

define the pair distribution function gðxÞ as the observed
probability density for two pedestrians to have relative
separation x divided by the expected probability density
for two noninteracting pedestrians to have the same
separation. In general, the probability density for non-
interacting pedestrians cannot be known a priori, since it
depends on where and how frequently pedestrians enter
and exit the environment. However, for large data sets we
are able to closely approximate this distribution by sam-
pling the separation between all pairs of pedestrians that are
not simultaneously present in the scene (and therefore not
interacting). As defined above, small values of the pair
distribution function, gðxÞ ≪ 1, correspond to situations
where interactions produce strong avoidance.
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If the Cartesian distance r between two pedestrians was a
sufficient descriptor of their interaction, we would expect
the shape of the pair distribution function gðrÞ to be
independent of all other variables. However, as can be
seen in Fig. 1(c), gðrÞ has large, qualitative differences
when the data are binned by the rate at which the two
pedestrians are approaching each other, v ¼ −dr=dt. In
particular, pedestrians with a small rate of approach are
more likely to be found close together than those that are
approaching each other quickly (as evidenced by the
separation between the curves at small r). A particularly
pronounced difference can be seen for the curve corre-
sponding to small v, where the large peak suggests a
tendency for pedestrians with similar velocities to walk
closely together.

While the distance r is not a sufficient descriptor of
interactions, we find that the pair distribution function
can, in fact, be accurately parametrized by a single variable
that describes how imminent potentially upcoming colli-
sions are. We refer to this variable as the time to collision,
denoted τ, which we define as the duration of time for
which two pedestrians could continue walking at their
current velocities before colliding. As shown in Fig. 1(d),
when the pair distribution function is plotted as a function
of τ, curves for different rates of approach collapse onto
each other, with no evidence of a separate dependence
of the interaction on v. Even when binned by other
parameters such as the relative orientation between pedes-
trians, there is no significant difference between curves
(see the Supplemental Material [29]). This consistent
collapse of the curves suggests that the single variable τ
provides an appropriate description of the interaction
between pedestrians.
This pair distribution function gðτÞ describes the extent

to which different configurations of pedestrians are made
unlikely by the mutual interaction between pedestrians.
In general, situations with strong interactions (small τ) are
suppressed statistically, since the mutual repulsion between
two approaching pedestrians makes it very unlikely that the
pedestrians will arrive at a situation where a collision is
imminent. This suppression can be described in terms of a
pedestrian “interaction energy” EðτÞ. In particular, in
situations where the average density of pedestrians does
not vary strongly with time, the probability of a pair of
pedestrians having the time to collision τ can be assumed to
follow a Boltzmann-like relation, gðτÞ ∝ exp½−EðτÞ=E0�.
Here, E0 is a characteristic pedestrian energy, whose value
is scene dependent.
This use of a Boltzmann-like relation between gðτÞ and

EðτÞ amounts to an assumption that the systems being
considered are at, or near, statistical equilibrium. In our
analysis, this assumption is motivated by the observation
that the intensive properties of the system in each of the
data sets (e.g., the average pedestrian density and walking
speed) are essentially time independent. If this time
independence is taken as given, a Boltzmann-like relation
follows as a consequence of entropy maximization. By
rearranging this relation, the interaction energy can be
expressed in terms of gðτÞ as

EðτÞ ∝ ln ½1=gðτÞ�: ð1Þ

A further, self-consistent validation of Eq. (1) is pro-
vided below.
Figure 2 plots the interaction law defined by Eq. (1)

using the values for gðτÞ derived from our two aggregated
pedestrian data sets. It is worth emphasizing that these two
data sets capture very different types of pedestrian motion.
The pedestrian trajectories in the Outdoor data set are
generally multidirectional paths in sparse-to-moderate
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FIG. 1 (color online). Analysis of anticipation effects in
pedestrian motion. (a) Two pedestrians react strongly to avoid
an upcoming collision even though they are far from each other
(path segments over an interval of 4s are shown as colored lines,
with arrows indicating acceleration). (b) In the same environ-
ment, two pedestrians walk close to each other without any
relative acceleration. (c) The pair distribution function g as a
function of interpedestrian separation r shows very different
behavior when plotted for pedestrian pairs with different rate of
approach v ¼ −dr=dt. Units of v are m/s. (d) In contrast, when g
is computed as a function of the time to collision τ, curves
corresponding to different v collapse onto each other.
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densities, with pedestrians often walking in groups or
stopping for brief conversations. In contrast, trajectories
in the Bottleneck data set are largely unidirectional, with
uniformly high density, and with little stopping or grouping
between individuals.
Remarkably, despite their large qualitative differences,

both data sets reveal the same power-law relationship
underlying pedestrian interactions. For both data sets,
the interaction energy E shows a quadratic falloff as a
function of τ, so that EðτÞ ∝ 1=τ2 over the interval where E
is well defined. For smaller values of τ (less than ∼200 ms),
the energy seen in the data saturates to a maximum value,
likely as a consequence of finite human reaction times.
For sufficiently large values of τ, on the other hand, the
observed interaction energy quickly vanishes, suggesting a
truncation of the interaction when the time to collision is
large. We denote the maximum observed interaction range
as t0 (Bottleneck: t0 ≈ 1.4 s; Outdoor: t0 ≈ 2.4 s).
Importantly, t0 does not, by itself, indicate the intrinsic

interaction range between pedestrians, since interactions
between distant, non-neighboring pedestrians are screened

by the presence of nearest neighbors, as in other dense,
interacting systems [35,36]. For a crowd with density ρ,
the characteristic “screening time” can be expected to scale
as the typical distance between nearest neighbors, ρ−1=2,
divided by the mean walking speed u. Such scaling is
indeed consistent with the trend observed in our data,
with the denser Bottleneck data set (ρ ¼ 2.5 m−2,
u ¼ 0.55 m=s) demonstrating a smaller value of t0 than
the sparser Outdoor data set (ρ ¼ 0.27 m−2, u ¼ 0.86 m=s)
[37]. While the large-τ behavior in our data sets is therefore
dominated by screening, we can use the largest observed
values of t0 to place a lower bound estimate on the intrinsic
range of unscreened interactions (which we denote as τ0).
This estimate suggests that an appropriate value is τ0 ≈ 3 s,
which is consistent with previous research demonstrating
an interaction time horizon of 2–4 s [21].
Since the interaction energy follows a power law with a

sharp truncation at large τ, we infer from the data the
following form of the pedestrian interaction law:

EðτÞ ¼ k
τ2
e−τ=τ0 : ð2Þ

Here, k is a constant that sets the units for energy.
To demonstrate the general nature of the identified

interaction law, we performed simulations of pedestrians
that adapt their behavior according to Eq. (2) via force-
based interactions. In particular, the energy EðτÞ directly
implies a natural definition of the force F experienced by
pedestrians when interacting:

F ¼ −∇r

�
k
τ2
e−τ=τ0

�
; ð3Þ

where ∇r is the spatial gradient. A full analytical expres-
sion for this derivative is given in the Supplemental
Material [29].
For the purposes of simulation, each pedestrian is also

given a driving force associated with its desired direction of
motion, following Ref. [9]. The resulting force model is
sufficient to reproduce a wide variety of important pedes-
trian behaviors, including the formation of lanes, arching in
narrow passages, slowdowns in congestion, and anticipa-
tory collision avoidance (Fig. 3). Additionally, the simu-
lated pedestrians match the known fundamental diagram
[38] of speed-density relationships for real human crowds
and qualitatively capture the empirical behavior of gðrÞ
depicted in Fig. 1(c) [29].
Our simulations also reproduce the anticipatory power

law described by Eq. (2), as shown in Fig. 4. In contrast,
simulations generated by distance-based interaction forces
fail to show a dependence of E on τ (Fig. 4, inset). Other,
more recent models of pedestrian behavior also cannot
consistently capture the empirical power-law relationship
(see the Supplemental Material [29]). The ability of our own
simulations to reproduce EðτÞ also provides a self-consistent
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FIG. 2 (color online). (a) The interaction energy computed from
the dense Bottleneck data set and from the more sparse Outdoor
data set (inset). The overall constant k is normalized so that
Eð1Þ ¼ 1. Both data sets fit well to a power law up to a point
marked t0, beyond which there is no discernible interaction. Solid
lines show the fit to the data and colored regions show their
corresponding 95% confidence interval (Bottleneck, R2 ¼ 0.94;
Outdoor, R2 ¼ 0.92). (b) The interaction energy in both data sets
is well described by a power law with exponent 2.
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validation of our use of the Boltzmann relation to infer the
interaction energy from data.
Interesting behavior can also be seen when Eq. (3) is

applied to walkers propelled forward in the direction of
their current velocity without having a specific goal (as
implemented, for example, in Ref. [39]). In such cases,
complex spatiotemporal patterns emerge, leading eventu-
ally to large-scale synchronization of motion. An example
is illustrated in Fig. 3(e), where a collection of pedestrians
that is initialized to a high energy state with many imminent
collisions settles over time into a low energy state where
pedestrians move in unison. This result is qualitatively
similar to observed behavior in dense, non-goal-oriented
human crowds [40], and is reminiscent of the “flocking”
behavior seen in a variety of animal groups [41–45].

A detailed study of such collective behaviors, however,
is outside the scope of our present work.
While the model implied by Eq. (3) is widely applicable,

it may not be sufficient on its own to capture certain crowd
phenomena, such as the shock waves and turbulent flows
that have been reported to occur in extremely high density
crowds [46]. In such very dense situations, saturating
effects such as finite human reaction time become relevant,
and these may alter the quantitative form of the interaction
in a way that is not well-captured by our time-to-collision-
based analysis. Augmenting our result with an additional
close-ranged component of the interaction may give a
better description of these extremely dense scenarios, and is
a promising avenue for future work.
To conclude, our statistical mechanics-based analysis of

a large collection of human data has allowed us to quantify
the nature and strength of interactions between pedestrians.
This novel type of analysis opens new avenues for studying
the behavior of humans using real life data. The data we
have analyzed here reveal the existence of a single
anticipatory power law governing the motions of humans.
The consistency of this law across a variety of scenarios
provides a new means to understand how pedestrians
behave and suggests new ways to evaluate models of
pedestrian interactions. Further, these results suggest a
general quantitative law for describing human anticipation
that may extend to other studies of human behavior, which
may therefore be amenable to a similar type of analysis.
See Ref. [47] for information regarding simulation

source code and videos.
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FIG. 3 (color online). Stills from simulations of agents follow-
ing the force law derived from Eq. (2). In panels (a)–(d), agents
are represented as cylinders and color coded according to their
goal direction. The simulated agents display many emergent
phenomena also seen in human crowds, including arching around
narrow passages (a), clogging and “zipping” patterns at bottle-
necks (c), and spontaneously self-organized lane formation
(b) and (d). Panel (e) depicts a simulation of agents without a
preferred goal direction (arrows represent the agents’ current
orientations). The agents’ interactions lead to large-scale syn-
chronization of their motion. Further simulation details are given
in the Supplemental Material [29].

FIG. 4 (color online). Inferred interaction energy E ∝ lnð1=gÞ
as a function of time to collision τ for different simulations,
obtained using the anticipatory force described by Eq. (3), and
the distance-dependent force described in Ref. [9] (inset). For
simulations with strictly distance-dependent interactions, the
inferred interaction energy does not show a dependence on τ.
In contrast, simulations following our model closely match the
observed empirical power law for EðτÞ. Shaded regions denote
average energy values �1 standard deviation.
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