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We present a general and formally exact method to obtain the canonical one-body density distribution
and the canonical free energy from direct decomposition of classical density functional results in the grand
ensemble. We test the method for confined one-dimensional hard-core particles for which the exact grand
potential density functional is explicitly known. The results agree to within high accuracy with those from
exact methods and our Monte Carlo many-body simulations. The method is relevant for treating finite
systems and for dynamical density functional theory.
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Classical density functional theory (DFT) [1–3] forms an
essential tool for the investigation of a broad spectrum of
simple [4] and complex systems [5] in soft condensed
matter. While DFT was shown to describe a broad range
of the occurring phenomena, typically the investigated
systems contain at least one large spatial dimension, such
that a thermodynamic limit can be performed, where the
volume V → ∞ and the number of particles N → ∞ upon
keeping the mean particle density N=V ¼ const.
Evans [1] and Mermin [3] originally formulated the

exact variational principle of DFT using the grand ensem-
ble, where N fluctuates and the chemical potential μ, the
volume V, and the absolute temperature T constitute the
independent thermodynamic variables. The equilibrium
thermodynamic grand potential Ω0ðμ; V; TÞ generalizes
to a grand potential functional Ωð½ρ�; μ; V; TÞ of the one-
body density distribution ρðrÞ, where r indicates position.
Within the variational theory, ρðrÞ forms the trial field
which is a priori unknown. For a given thermodynamic
state at μ, V, and T it is the equilibrium grand canonical
density distribution ρ0ðrÞ which minimizes Ω [1,3]. Hence,
at the minimum

δΩð½ρ�; μ; T; VÞ
δρðrÞ

����
ρ0ðrÞ

¼ 0: ð1Þ

Evaluating the functional at ρ0ðrÞ yields the thermody-
namic grand potential, Ω½ρ0� ¼ Ω0.
Both ensembles, grand canonical and canonical, are

equivalent in the thermodynamic limit and the differences
between them can be negligible if N ≳ 102. Nevertheless,
there are many interesting systems where the number of
particles is small and the occurring structuring depends
nontrivially on N. Examples are the confinement of hard
spheres in spherical cavities [6], isolated colloidal clusters
with ∼10 particles [7], spherical colloids confined in
adaptive two-dimensional cavities [8], and the formation
of domain walls in two-dimensional confined anisotropic
particles [9].

Further interest in a canonical description originates
from the highly successful dynamical DFT for Brownian
dynamics [1,10]. Here the time evolution via the underly-
ing Brownian many-body dynamics is intrinsically particle
conserving, and should, hence, be more appropriately
modeled canonically than, as is usually done, grand
canonically.
Previous efforts to construct a canonical DFT were

based, e.g., on adding a correction term to the grand
potential functional [11] in order to suppress the density
fluctuations. In Ref. [6], González et al. expressed the
canonical density distribution via a series expansion in
powers of the inverse average number of particles. By
truncating the series, they could obtain rather accurate
canonical profiles from grand canonical DFT in a system of
confined hard spheres. The method was subsequently
applied to a system of one-dimensional rods [12]. The
formal extension of the DFT formalism to the canonical
ensemble can be based on the Mermin-Evans argument
[13] or on Levy’s constrained search method [14].
In this Letter we present a general and formally exact

method to obtain the canonical one-body density distribu-
tion and the canonical partition function using a given
grand canonical density functional. The method is based
on decomposing the smooth variation with μ of the
grand canonical quantities into the underlying discrete,
N-dependent canonical quantities. In order to demonstrate
the validity of the method we consider the one-dimensional
system of confined hard particles. As Percus’ (grand) free
energy functional for this system is exact, we obtain the
exact canonical density profiles and the exact canonical
partition functions for each discrete value of N.
In detail, we consider N one-dimensional hard rods of

length σ confined between two parallel walls that are
separated by a distance h. The interaction between a
particle and each wall is also hard core; i.e., the particles
cannot penetrate the walls. We compute the grand canonical
density profiles ρ0ðx; μÞ, where x is the space variable,
using the exact grand canonical density functional [15].
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The minimization is performed using a standard conjugate
gradient method (see, e.g., Ref. [16] for details about the
implementation). As a reference we use benchmark results
for canonical density profiles ρNðxÞ from our canonical
Monte Carlo (MC) simulations, where we first equilibrate
the system by performing 106 MC steps and then run
108–1010 steps to obtain the density profiles.
In order to illustrate the differences between canonical

and grand canonical ensembles we show, in Fig. 1, density
profiles for a pore with h=σ ¼ 4.9. The values of μ in the
grand ensemble are chosen such that the resulting average
total number N̄ of particles equals their (integer) number
N in the corresponding canonical system. In both grand
canonical and canonical ensembles the number of particles
can be calculated via the spatial integrals of the corre-
sponding density profiles:

N̄ðμÞ ¼
Z
V
dxρ0ðx; μÞ; ð2Þ

N ¼
Z
V
dxρNðxÞ: ð3Þ

Because of the hard-core nature of the confined system, the
maximal number of particles is Nmax ¼ 4 for the chosen
value of h. The density profiles in both ensembles are
strikingly different from each other, as is exemplified by the

canonical profile for N ¼ 1, cf. Fig. 1(a), which is constant
within the allowed region (0.5σ ≤ x ≤ h − 0.5σ). However,
the corresponding grand canonical profile with N̄ ¼ 1
exhibits clear structuring due to the combination of under-
lying canonical profiles.
First we describe how to obtain the canonical partition

functions ZNðV; TÞ from the grand canonical DFT. The
grand partition function of a given system is

Ξðμ; V; TÞ ¼
X∞
N¼0

eβμNZNðV; TÞ; ð4Þ

where β ¼ 1=kBT, with kB being the Boltzmann constant.
Note that in a closed system of hard cores, such as the
present one, the sum truncates at a maximal number of
particles, Nmax. The thermodynamic grand potential is

Ω0ðμ; V; TÞ ¼ −kBT lnΞðμ; V; TÞ: ð5Þ

Combining Eqs. (4) and (5), we find

exp½−βΩ0ðμ; V; TÞ� − 1 ¼
X∞
N¼1

eβμNZNðV; TÞ; ð6Þ

where the partition function of the empty state is Z0 ¼ 1
(which only affects the normalization of the grand canoni-
cal partition function, and therefore an unimportant additive
constant in the grand potential). Equation (6) can be
rewritten as

1 ¼
X∞
N¼1

cNðμ; T;Ω0ÞZN; ð7Þ

with

cNðμ; T;Ω0Þ ¼
exp½βμN þ βΩ0ðμÞ�
1 − exp½βΩ0ðμÞ�

; ð8Þ

where we have suppressed the dependence ofΩ0 and ZN on
V and T in the notation. Given a grand canonical DFT,
minimizing the functional for given values of μ, V, and T
yields results for Ω0ðμÞ. This enables us to calculate the
coefficients cN for each N according to Eq. (8). By
repeating the procedure for different values of μ we obtain
a set of linear equations, cf. Eq. (7), where the only
unknown variables are the canonical partition functions
ZN . Numerically, solving this set of linear equations yields
results for the ZN . In Fig. 2, we show the numerically
obtained canonical partition functions for the one-
dimensional system as a function of the wall separation
h. We compare these results with the analytic expression for
the partition function [17], ZN ¼ (ðh − NσÞ=Λ)N=N!,
where Λ is the (irrelevant) thermal wavelength that we
have set as Λ ¼ σ. The agreement is perfect.
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FIG. 1 (color online). Scaled density profiles ρðxÞσ as a
function of x=σ in the canonical ensemble (black symbols)
and in the grand canonical ensemble (red lines) obtained with
canonical MC simulation and the exact grand canonical DFT,
respectively. The pore width is h=σ ¼ 4.9. The canonical number
of particles N equals the average grand canonical number of
particles N̄ in cases (a) N ¼ 1; (b) N ¼ 2; (c) N ¼ 3. In
(d) N ¼ 4 and N̄ ≈ 3.95. Note that N̄ ¼ 4 corresponds to the
limit μ → ∞ that cannot be achieved by numerical minimization
of the functional.
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In order to further demonstrate the validity of the
method, we have computed the equation of state N̄ðμÞ
using three different approaches: (i) minimizing the grand
canonical DFT at different μ and obtaining N̄ðμÞ as the
space integral of the (grand canonical) density distribution,
see Eq. (2), (ii) using the obtained results for ZN to compute
the grand canonical partition function via Eq. (4) and then
using the thermodynamic relation

N̄ðμÞ ¼ ∂ lnΞ
∂ðβμÞ

����
V;T

; ð9Þ

and (iii) as an average in the grand canonical ensemble

N̄ðμÞ ¼
X∞
N¼0

pNðμÞN; ð10Þ

where

pNðμÞ ¼ expðβμNÞ ZN

ΞðμÞ ; ð11Þ

is the probability of finding N particles at given value of μ.
The results are shown in Fig. 3(a). The three curves lie on
top of each other. In Figs. 3(b) and 3(c) we show the
probabilities pN as a function of μ and N̄, respectively. As
expected the probability of finding N particles is maximal
at the value of the chemical potential for which N̄ðμÞ ¼ N.
At high values of μ almost only the state with four particles
contributes to the grand canonical state because states
with N > 4 are not allowed. Actually, in the limit μ → ∞
the grand canonical state with N̄ ¼ 4 is the same as the
canonical state with N ¼ 4 [cf. Fig. 1(d)] in this pore.
However, in wider pores differences between canonical and

grand canonical ensembles can be observed at higher
values of N.
The method remains valid in the presence of an external

potential. As an example, we show in Fig. 3(d) pN as a
function of N̄ in a pore with h=σ ¼ 25.9 and a parabolic
external potential βVextðxÞ ¼ 0.05ðx − h=2Þ2σ−2.
Next we decompose the one-body grand canonical

distribution function into one-body canonical distribution
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FIG. 2 (color online). Canonical partition functions ZN for a
range of particle numbers N ¼ 1–5 (as indicated) of a system of
one-dimensional hard particles confined between hard walls as a
function of the scaled wall separation distance h=σ. The lines
represent the analytic solution. The symbols indicate the numeri-
cal results for the partition functions obtained from decomposi-
tion of the exact grand canonical DFT results.
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FIG. 3 (color online). (a) Average number of particles N̄ as a
function of the scaled chemical potential βμ in a pore with h=σ ¼
4.9 calculated with three different methods. The lines lie on top of
each other. (b) Probability pN of finding N ¼ 0–4 (as indicated)
particles in a pore with h=σ ¼ 4.9 as a function of βμ. (c) pN as a
function of the average number of particles N̄ inside the pore.
(d) pN , with N ¼ 0–25, as a function of N̄ in a pore with h=σ ¼
25.9 and a parabolic external potential.
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functions. Using Eqs. (2), (3), and (10) allows us to express
the grand canonical one-body distribution as a linear
combination of canonical distributions:

ρ0ðx; μÞ ¼
X∞
N¼0

pNðμÞρNðxÞ: ð12Þ

All terms in the above expression are known except for the
canonical density profiles. Analogous to the case of the
partition function above, these can be obtained by solving a
set of linear equations, where the unknown quantities are
the canonical profiles, ρNðxÞ. This procedure applies
locally, i.e., for each value of x. The results are plotted
in Fig. 4, where we compare with the canonical profiles
obtained from MC simulations. The agreement is excellent
and demonstrates that one indeed is able to decompose the
grand canonical density profiles into the exact canonical
density profiles. While in wide pores the differences
between canonical and grand canonical profiles are small
or even negligible at intermediate packing fractions, sig-
nificant differences can be observed at high packing
fractions, see Fig. 4(b) for an example case.
To summarize, we have developed a method to obtain the

canonical partition functions and the canonical one-body
density distributions, using a given grand canonical DFT.
We have applied the method to a one-dimensional system

of hard rods for which the exact grand canonical free energy
functional is known. Therefore, the results for canonical
partition functions and for the canonical density profiles are
(numerically) exact. If one starts with an approximate grand
ensemble free energy functional, the resulting canonical
partition functions and profiles will be also approximative.
Their accuracy will depend on the quality of the starting
grand canonical DFT. Hence, the present method can also
be used to test the accuracy of a grand canonical DFT by
decomposition and comparing the resulting canonical pro-
files to those obtained in simulations (or experiments).
The set of linear equations that we have used to find

the canonical partition sums, cf. Eq. (7), requires as an
input the grand potential. Alternatively, we can combine
Eqs. (4) and (10), resulting in

X∞
N¼0

eβμN ½N − N̄ðμÞ�ZN ¼ 0: ð13Þ

In order to find ZN using Eq. (13) one only needs N̄ as
a function of μ. Thus, this might constitute a suitable
method to obtain ZN in grand canonical simulations (or
experiments).
Furthermore, the direct decomposition method might be

used to accelerate the numerical minimization of grand
canonical DFT for finite systems as follows: (i) minimize
the DFT for a given set of values of the chemical potential;
(ii) obtain the canonical partition functions and density
profiles; (iii) use ZN and the canonical profiles to straight-
forwardly obtain the grand canonical potential and density
profiles for any value of chemical potential. This decom-
position-recomposition scheme might be also applied to
obtain grand canonical states at very high chemical
potential; this is a regime that is difficult to access by
direct minimization of the functional. In order to decom-
pose the functional one only needs a range in μ to which all
the canonical states contribute. For example, in the pore
with h=σ ¼ 4.9, the range 0 ≤ βμ ≤ 2 [see Fig. 3(b)] is
enough to find all the canonical partition sums and density
profiles in the pore. Once these are known we can
recompose the canonical profiles and obtain the limit
μ → ∞ that corresponds to a pore with N ¼ 4.
From a numerical point of view the decomposition

scheme is a local, “postprocessing” routine, which does
neither depend on the complexity of the functional nor on
that of the external potential. It consists of solving a set of
linear equations with ∼Nmax unknowns (at each space
point). Even for the simple functional used here, this
procedure is therefore much faster than the DFT minimi-
zation routine. However, as the values of the coefficients cN
in Eq. (8) vary over many orders of magnitude, systems
with Nmax ≳ 50 become increasingly difficult to treat with
the standard solution methods that we use here. The use of
higher than double precision numerics might alleviate this
problem. An alternative, in particular for systems where
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FIG. 4 (color online). Scaled canonical density profiles ρNðxÞσ
obtained by MC simulation (black symbols) and using the grand
canonical decomposition (red lines) of the exact grand canonical
DFT for: (a) N ¼ 1–4 in a pore with h=σ ¼ 4.9, and (b) N ¼ 20
in a pore with h=σ ¼ 25.9 with a parabolic external potential
βVextðxÞ ¼ 0.05ðx − h=2Þ2σ−2. The dashed green line in (b) is
the grand canonical profile for N̄ ¼ 20. Only the left half of the
profiles are shown in (b).
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there is no restriction on the maximum number of particles,
consists of truncating the coefficients cN beyond a given
value of N. This applies provided that the chemical
potentials selected for the decomposition are such that the
truncated coefficients are sufficiently small. However, care
must be taken in order to not introduce truncation artifacts.
Besides the partition sum and one-body density profiles,

the decomposition method applies to all further grand
ensemble averages. This includes, in particular, canonical
two-body correlation functions, to be obtained from the
(usual) grand ensemble results (e.g., within DFT from the
Ornstein-Zernike or test-particle routes, or, alternatively,
from liquid state integral equation theories). The avail-
ability of such canonical results (for finite systems) offers
the exciting possibility to shed further light on the canoni-
cal version of the Ornstein-Zernike equation, as developed
by Ramshaw [18], Hernando, and Blum [14], and White
and González [19]. Furthermore, our method offers the
possibility to study ensemble differences in solvation
phenomena [1]. We have stayed away from phase tran-
sitions where multiple solutions might occur.
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