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We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic
potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a
Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an
exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition
theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the
flat and the curved directions in the potential landscape.
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Introduction.—A remarkable result of equilibrium stat-
istical mechanics is the theorem of energy equipartition. In
its simplest form, the theorem states that each quadratic
term in the Hamiltonian contributes with the same amount
of energy kBT=2 to the average energy of the system [1]. In
the case of a harmonic oscillator this applies to both kinetic
and potential energies. In the colloidal realm, particle
motions are strongly overdamped and velocity fluctuates
on a time scale that is often hardly accessible [2]. However,
the value of kinetic energy imposed by the equipartition
theorem is reflected in a diffusion coefficient that is
proportional to the mean squared velocity [3]:
DT ¼ μkBT. Therefore, for a colloidal harmonic oscillator
the equipartition theorem establishes a link between the
thermal diffusion constant DT and the average potential
energy U ¼ DT=2μ. Out-of-equilibrium systems are fre-
quently found in nature and the search for generalized
equipartition laws constitutes a very interesting and hot
topic [4,5]. In particular, there is a growing family of off-
equilibrium, active colloidal particles that are able to
harness some form of locally stored energy to self-propel
in persistent random walks [6,7]. An interesting example is
provided by passive colloidal tracers suspended in active
baths of swimming bacteria. Over time scales that are larger
than the persistence time of active forces, those particles
display a diffusive behavior with a diffusivity D� that can
be orders of magnitude larger than the thermal counterpart
DT [8]. It is found that, whenever the external potential
changes smoothly on the characteristic length scale of the
persistent motion, the system is well described by a quasi-
Boltzmann distribution with an effective temperature given
by kBTeff ¼ D�=μ [9,10]. In this limiting case the equi-
partition theorem is recovered in its original form, being a
straightforward consequence of Boltzmann statistics.
However, when the external potential does not meet these
requirements, Boltzmann statistics breaks down [11,12]
and an equilibriumlike picture with one single effective
temperature fails. This is particularly evident in the case of

rectification effects, as those investigated in Refs. [13–15].
In these works it has been shown that a bacterial bath can
spontaneously induce the unidirectional motion of nano-
fabricated asymmetric objects. Similarly, microfabricated
structures can rectify the motion of motile bacteria and
accumulate them in specific spatial regions [16]. Moreover,
passive colloidal tracers can be delivered onto target sites
by the rectification of fluctuating forces from a bacterial
bath [17,18]. Failure of Boltzmann statistics also leads to
novel nonequilibrium effects such as the emergence of
effective attraction in the presence of purely repulsive
potentials [19,20]. In this context, a simple generalization
of equipartition could seem unlikely.
In this Letter we demonstrate that, in the case of active

harmonic oscillators, the average value of potential energy
is still linked to the diffusivity by a simple generalization of
the equipartition theorem. As a consequence, the effective
temperature associated with the potential energy is always
lower than the one obtained from the free diffusion
coefficient. We investigate experimentally and numerically
the dynamics of colloidal beads, subject to a harmonic
potential, suspended in a bath of swimming E. coli cells.
The elastic force field is obtained experimentally by placing
the microspheres in a cylindrical microcapillary.
Sedimenting colloids fluctuate near the bottom of the
capillary where they experience a near-perfect harmonic
potential.
Experiment.—Motile E. coli cells are prepared following

the protocol described in [21]. Silica beads of radius
a ¼ 3.5 μm are first diluted in deionized water and then
mixed with bacteria directly on a glass slide. The final
bacteria density is estimated to be ∼1010 cells=ml. The
bacteria-colloids solution is loaded in a microcapillary
glass tube (Vitrocom) of internal radius R ¼ 25 μm by
capillarity. The sample is left open for a few minutes before
sealing with index matching oil. This procedure results in
the formation of two air bubbles at the edges of the
capillary tube as shown in Fig. 1(a). Residual distortions
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due to the internal glass-water interface have a negligible
effect as shown by the absence of anisotropies in both
particle shape and diffusion in the absence of bacteria
(see [21]).
Colloidal beads sediment at the bottom of the capillary

and align along the tube axis with an average distance of

about 20 μm. We collect bright field images using a 20×,
NA 0.25 microscope objective. After background subtrac-
tion and thresholding we obtain particle trajectories by
center-of-mass tracking. We report data for 10 beads that
were simultaneously tracked for 100 s at a rate of
100 frames=s. The beads span a capillary length of
approximately 250 μm probing a local environment char-
acterized by a bacterial activity that decreases as the
distance from the trapped air bubble increases.
Simulations.—The numerical simulations are performed

by considering spherical colloidal particles of radius a
immersed in a bath of self-propelling dumbbells following
a “run and tumble” dynamics. Both particles and bacteria
are confined in a cylindrical volume as shown in Figs. 1(b)
and 1(c). All interactions are modeled by repulsive steric
forces. In addition, particles experience a gravitational
force fz ¼ −mg due to gravity where m is the buoyant
mass of the colloidal particle and g is the acceleration due to
gravity. We include Brownian motion only for particles
dynamics and neglect hydrodynamic interactions [13,19].
A detailed description of the simulation can be found
in [21].
Results.—The mean-squared displacement hΔx2ðtÞi

(MSD) along the capillary axis is shown in Fig. 2(a) for
two beads located at about 30 and 230 μm from the edge of
the air bubble. Both particles show an MSD characterized
by a superdiffusive regime at short times followed by a
diffusive dynamics at longer time scales. This is in

FIG. 1 (color online). (a) A 3.5 μm radius silica bead is
suspended in a bath of motile E. coli bacteria filling a 25 μm
radius capillary glass tube. (b),(c) Snapshots from the numerical
simulation.

(a) (b) (c)

(d) (e) (f)

FIG. 2 (color online). (Top panels—experimental data) (a) MSD along the capillary axis of two colloids located at 30 (circle) and at
230 μm (square) from the air bubble (oxygen reservoir), (triangle) MSD of the colloid in the absence of bacteria [21]. The solid lines are
fits with Eq. (2). (b) MSD of the same particles in (a) along an orthogonal direction to the capillary axis. Solid lines are fits with Eq. (3).
(c) Probability distributions of y of the same two colloids in (a) and (b), the solid lines are fits with a Gaussian distribution. (Bottom
panels—simulation data) (d), (e), and (f) are the same as (a), (b), and (c) for two simulated colloids in a bacterial bath with varying
average swimming speed 30 μm=s (circle) and 15 μm=s (square).
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qualitative agreement with the results of previous experi-
ments performed on flat surfaces [8,17,29]. Along the y
axis the particle motion is constrained by the curved
capillary surface and the MSD saturates at a constant value
[Fig. 2(b)]. The MSD along both axes decreases when
moving away from the air bubble, due to a decrease of
bacterial activity, as discussed in more detail in the
following. Figure 2(c) shows the probability distribution
PðyÞ together with the best Gaussian fits.
A very similar behavior is observed in simulations where

the diffusivity of colloids is tuned by varying the average
swimming speed of bacteria [see Figs. 2(d), 2(e), and 2(f)].
In particular, when bacteria are faster the diffusivity of the
particles increases, but also the transition between the
ballistic and the diffusive regime shifts to a shorter
time scale.
Modeling and discussion.—The motion of the particles is

mostly constrained on the capillary surface. In this case the
z coordinate of the center of mass of the colloidal particle is
directly given by z ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − y2
p

∼ −ρþ y2=2ρ with
ρ ¼ R − a. The force acting along the y axis is therefore
computed as fy ¼ −mg∂z=∂y ∼ −mgy=ρ. The resulting
force field is then well approximated by an elastic force
acting along the y axis with a spring constant k defined by
k ¼ mg=ρ. The cylindrical geometry of the capillary results
in fx ¼ 0. In addition to the deterministic force f the
colloids are subject to thermal fluctuations and to inter-
actions with swimming bacteria. To account for these we
model the dynamics of the beads with the following
stochastic differential equation:

_r ¼ μfðrÞ þ ηT þ ηA; ð1Þ

where rðtÞ ¼ (xðtÞ; yðtÞ), f ¼ ð0;−kyÞ, and μ is the
mobility of the colloidal particle. We assume that the noise
term can be split into two independent components: the
standard Langevin thermal noise ηT with hηTαðtÞηTβ ðt0Þi ¼
2DTδαβδðt − t0Þ and DT ¼ μkBT, an active noise ηA that
is exponentially time correlated [18] hηAαðtÞηAβ ðt0Þi ¼
DAδαβ expð−jt − t0j=τÞ=τ, where α; β represent individual
Cartesian components. From Eq. (1) we can compute the
MSD along x:

hΔx2ðtÞi ¼ 2DTtþ 2DA½t − τð1 − e−t=τÞ�; ð2Þ

and the MSD of yðtÞ:

hΔy2ðtÞi ¼ 2DT

μk
ð1 − e−μktÞ

þ 2DA

μk
1 − e−μkt − μkτð1 − e−t=τÞ

1 − ðμkτÞ2 : ð3Þ

Equations (2) and (3) provide an excellent fit to the MSD
along both x and y [Figs. 2(a) and 2(b)]. Along both axes

the parameter DA shows a clear dependence on the average
position of the particle hxiwith respect to the edge of the air
bubble. DA is found to decrease from 0.31 to 0.14 μm2=s
upon increasing hxi by a few hundreds of microns. This
suggests that bacterial motility depends on the concen-
tration of oxygen that is progressively consumed by
bacteria along the capillary [30]. Differently, the fitting
parametersDT , τ, and μk do not show any clear dependence
on the distance from the air bubble. The obtained averages
over all particles are τ ¼ 0.093ð0.015Þ s, DT ¼
0.030ð0.002Þ μm2=s along x and τ ¼ 0.097ð0.023Þ s,
DT ¼ 0.046ð0.013Þ μm2=s, μk ¼ 0.289ð0.067Þ s−1 along
y, where standard deviations are shown in brackets. MSD
in the absence of bacteria are reported in Fig. 2. The
corresponding fitting parameters are μk ¼ 0.36 s−1 and
DT ¼ 0.025 and 0.026 μm2=s along x and y, respectively.
Those values are compatible with those found in the
presence of bacteria, although correlations between fitting
parameters result in larger uncertainties in DT along y. The
values of DT , with or without bacteria, are about a factor of
2 smaller than the bulk value which can be attributed to
increased drag due to wall effects [21,31]. We can now
estimate the sedimentation length of our colloids in the
bacterial bath as ðDT þDAÞ=μmg ∼ 40 nm, which vali-
dates our initial assumption of a colloidal motion that is
mostly restricted at the capillary surface. Previous studies
of bacterial swimming in the presence of confining walls
have evidenced the possibility of complex swimming
patterns that could possibly result in anisotropies in the
bacterial bath [32,33]. Such an anisotropy, if present,
should be reflected in a corresponding asymmetry in the
motion of the colloidal tracers along x and y. However, we
do not observe any systematic deviation between DA and τ
when fitted independently to the x and y components
of MSD.
TheMSD along x and y of the beads from simulations can

be fitted with the same Eqs. (2) and (3) where this time
DA and τ are the only free parameters. As seen in Figs. 2(d)
and 2(e), these functions fit verywell the simulation data. By
fitting the MSD along x with the free parameters DA and τ
we find thatDA grows continuously from 6.8 to 16.0 μm2=s
as we increase the average speed from 15 to 30 μm=s. The
parameter τ shows also a marked change upon changing
the average speed going from τ ¼ 0.44 to 0.23 s.
The hΔy2ðtÞi from simulations is fitted with Eq. (3) with

the same free parametersDA and τ givingDA growing from
6.7 to 14.0 μm2=s, that is almost identical to the one found
from the fitting of hΔx2ðtÞi. Also the τ found from the fit of
hΔy2ðtÞi is very close to the one found from the MSD
decreasing from ∼0.4 to 0.2 s upon increasing the average
swimming speed of bacteria. It has to be noted that
simulations are in qualitative agreement with the experi-
ments, although a quantitative comparison shows that both
τ and DA result in being considerably larger in simulations
than in experiments.
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It is, however, clear that the model of Eq. (1) can be used
to fit both numerical and experimental curves and that this
allows us to make a precise statement on how to generalize
equipartition of energy for active particle systems in
harmonic potentials. At equilibrium, when only thermal
noise is present, the average potential energy of the particle
U ¼ khy2i=2 is simply given by the equipartition theorem
U ¼ DT=2μ. When active forces are introduced, they will
add an extra contribution to U that can be obtained taking
the limit of (3):

U ¼ 1

2
k lim
t→∞

hΔy2ðtÞi=2 ¼ DT

2μ
þDA

2μ

1

1þ μkτ
: ð4Þ

It is worth noting that even within the very general
premises of exponentially correlated noise, the expression
for the average potential energy retains a form that is very
close to the equilibrium equipartition result, with the only
difference being that the contribution from the active noise
is reduced by a factor 1þ μkτ. When the persistence time τ
is much shorter than the relaxation time in the potential well
1=μk, we recover the equilibrium form. This result is a
direct consequence of the fact that when τ is much shorter
than any other time scale in the problem, the active noise is
practically white and Boltzmann statistics holds with the
(unique) effective temperature kBTeff ¼ ðDA þDTÞ=μ.
However, if μkτ ∼ 1, even when the stationary distribution
deviates strongly from the Boltzmann (as in run and tumble
dynamics [11]), the average potential energy will be given
by the simple formula (4).
We now discuss this generalized equipartition formula in

both experiments and simulation. We plot the variance hy2i
in Fig. 3. Figure 3 shows that the experimental hy2i is close
to the straight line when plotted as a function of ðDA þ
DTÞ=μk indicating only weak deviation from the unique
Teff regime. This is consistent with the experimental
μkτ ≈ 0.028ð≪ 1Þ. On the other hand, in simulations
μkτ ranges approximately from 0.47 to 0.23. As shown
in Fig. 3 we observe hy2i deviating considerably from the
straight line when plotted as a function of ðDA þDTÞ=μk,
while when plotted as a function of Eq. (4) we see a
substantial agreement with the straight line.
We remark that all these considerations are restricted to

the second moment of fluctuations (i.e., hy2i), and remain
valid as long as the active noise is exponentially correlated,
whatever is the static noise distribution. In our specific case,
we have empirically found that the probability distribution
PðyÞ is well approximated by a Gaussian. This implies that
PðyÞ ∼ exp½−ky2=2kBTeff � and all the static properties of
the colloids in the active bath under the influence of
the harmonic potential can be predicted by setting
kBTeff ¼ DA=½μð1þ μkτÞ� þDT=μ. This effective temper-
ature is, however, different from the effective temperature
governing long time diffusion along the flat direction x
which is given by ðDA þDTÞ=μ. In a way, the system

behaves like an equilibrium system whose free diffusivity
and potential energy are governed by two different effective
temperatures, the latter being a function of the curvature k
of the external potential.
Conclusions.—We have investigated, experimentally and

numerically, the possibility of generalizing energy equi-
partition to out-of-equilibrium systems consisting of col-
loidal particles that are subject to both a harmonic potential
and the interactions with a bath of swimming bacteria. We
found that the system obeys a modified energy equiparti-
tion law. A harmonic degree of freedom contributes an
average potential energy that takes the equilibrium form for
small curvatures and decreases when the relaxation time in
the harmonic well starts to be comparable to the persistence
time of active forces. Based on these observations we
expect that using a different type of self-propelled colloids,
i.e., Janus particles, one could have direct experimental
access to higher τ values and observe the predicted strong
deviations from equilibrium equipartition.
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FIG. 3 (color online). Generalized equipartition plot. The
variance of particle fluctuations along the y-coordinate is
proportional to a weighted sum of thermal and active diffusivities,
Eq. (4).

PRL 113, 238303 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

238303-4

http://dx.doi.org/10.1103/PhysRevLett.95.160601


[3] H. Risken, The Fokker-Planck Equation: Methods of
Solution and Applications (Springer, Berlin, 1984).

[4] K. To, Phys. Rev. E 89, 062111 (2014).
[5] L. Conti, P. De Gregorio, and G. Karapetyan, J. Stat. Mech.

(2013) P12003.
[6] W. K. Poon, in Physics of Complex Colloids, Proceedings of

the International School of Physics “Enrico Fermi,” Course
CLXXXIV, edited by C. Bechinger, F. Sciortino, and P. Ziherl
(IOS, Amsterdam, 2012).

[7] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[8] X. L.Wu andA. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
[9] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet,

Phys. Rev. Lett. 105, 088304 (2010).
[10] C. Maggi, A. Lepore, and J. Solari, Soft Matter 9, 10 885

(2013).
[11] J. Tailleur and M. E. Cates, Europhys. Lett. 86, 60002

(2009).
[12] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[13] L. Angelani, R. Di Leonardo, and G. Ruocco, Phys. Rev.

Lett. 102, 048104 (2009).
[14] R. Di Leonardo, L. Angelani, D. Dell'Arciprete, G. Ruocco,

V. Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De
Angelis, and E. Di Fabrizio, Proc. Natl. Acad. Sci.
U.S.A. 107, 9541 (2010); A. Sokolov, M. M. Apodaca,
B. A. Grzybowski, and I. S. Aranson, Proc. Natl. Acad. Sci.
U.S.A. 107, 969 (2010).

[15] L. Angelani and R. Di Leonardo, New J. Phys. 12, 113017
(2010).

[16] P. Galajda, J. Keymer, P. Chaikin, and R. Austin,
J. Bacteriol. 189, 8704 (2007).

[17] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo,
Nat. Commun. 4, 2588 (2013).

[18] N. Koumakis, C. Maggi, and R. Di Leonardo, Soft Matter
10, 5695 (2014).

[19] L. Angelani, C. Maggi, M. L. Bernardini, A. Rizzo, and
R. Di Leonardo, Phys. Rev. Lett. 107, 138302 (2011).

[20] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[21] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.238303 for details
about bacteria preparation, numerical simulations and con-
trol measurements without bacteria, which includes
Refs. [22–28].

[22] M. T. Madigan et al., Brock Biology of Microorganisms,
13th ed. (Benjamin-Cummings Publishing Company, San
Francisco, 2010).

[23] H. C. Berg, E. Coli in Motion (Springer-Verlag, New York,
2004).

[24] S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu,
Proc. Natl. Acad. Sci. U.S.A. 103, 13 712 (2006).

[25] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg,
J. Bacteriol. 189, 1756 (2007).

[26] V. A. Martinez, R. Besseling, O. A. Croze, J. Tailleur,
M. Reufer, J. Schwartz-Linek, L. G. Wilson, M. A. Bees,
and W. C. K. Poon, Biophys. J. 103, 1637 (2012).

[27] S. Kim and S. Karrila, Microhydrodynamics (Dover, New
York, 2005).

[28] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P.
Flannery, Numerical Recipes in C, 2nd ed. (Cambridge
University Press, Cambridge, England, 1992).

[29] C. Valeriani, M. Li, J. Novosel, J. Arlt, and D. Marenduzzo,
Soft Matter 7, 5228 (2011).

[30] C. Douarche, A. Buguin, H. Salman, and A. Libchaber,
Phys. Rev. Lett. 102, 198101 (2009).

[31] E. Schaffer, S. F. Norrelykke, and J. Howard, Langmuir 23,
3654 (2007); J. Leach, H. Mushfique, S. Keen, R. Di
Leonardo, G. Ruocco, J. M. Cooper, M. J. Padgett, Phys.
Rev. E 79, 026301 (2009).

[32] S. van Teeffelen, U. Zimmermann, and H. Löwen, Soft
Matter 5, 4510 (2009).

[33] P. K. Radtke and L. Schimansky-Geier, Phys. Rev. E 85,
051110 (2012).

PRL 113, 238303 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

238303-5

http://dx.doi.org/10.1103/PhysRevE.89.062111
http://dx.doi.org/10.1088/1742-5468/2013/12/P12003
http://dx.doi.org/10.1088/1742-5468/2013/12/P12003
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1103/PhysRevLett.84.3017
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1039/c3sm51223a
http://dx.doi.org/10.1039/c3sm51223a
http://dx.doi.org/10.1209/0295-5075/86/60002
http://dx.doi.org/10.1209/0295-5075/86/60002
http://dx.doi.org/10.1088/0034-4885/75/4/042601
http://dx.doi.org/10.1103/PhysRevLett.102.048104
http://dx.doi.org/10.1103/PhysRevLett.102.048104
http://dx.doi.org/10.1073/pnas.0910426107
http://dx.doi.org/10.1073/pnas.0910426107
http://dx.doi.org/10.1073/pnas.0913015107
http://dx.doi.org/10.1073/pnas.0913015107
http://dx.doi.org/10.1088/1367-2630/12/11/113017
http://dx.doi.org/10.1088/1367-2630/12/11/113017
http://dx.doi.org/10.1128/JB.01033-07
http://dx.doi.org/10.1038/ncomms3588
http://dx.doi.org/10.1039/C4SM00665H
http://dx.doi.org/10.1039/C4SM00665H
http://dx.doi.org/10.1103/PhysRevLett.107.138302
http://dx.doi.org/10.1103/PhysRevLett.110.238301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.238303
http://dx.doi.org/10.1073/pnas.0602043103
http://dx.doi.org/10.1128/JB.01501-06
http://dx.doi.org/10.1016/j.bpj.2012.08.045
http://dx.doi.org/10.1039/c1sm05260h
http://dx.doi.org/10.1103/PhysRevLett.102.198101
http://dx.doi.org/10.1021/la0622368
http://dx.doi.org/10.1021/la0622368
http://dx.doi.org/10.1103/PhysRevE.79.026301
http://dx.doi.org/10.1103/PhysRevE.79.026301
http://dx.doi.org/10.1039/b911365g
http://dx.doi.org/10.1039/b911365g
http://dx.doi.org/10.1103/PhysRevE.85.051110
http://dx.doi.org/10.1103/PhysRevE.85.051110

