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The most conspicuous property of a semiflexible polymer is its persistence length, defined as the decay
length of tangent correlations along its contour. Using an efficient stochastic growth algorithm to sample
polymers embedded in a quenched hard-disk fluid, we find apparent wormlike chain statistics with a
renormalized persistence length. We identify a universal form of the disorder renormalization that suggests
itself as a quantitative measure of molecular crowding.
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Single-molecule experiments have established the worm-
like chain (WLC) as a standard model for semiflexible
biopolymers [1–5]. It emerges from the classical
Heisenberg model for a ferromagnetic spin chain in the
continuum limit, where the spins merge into an inextensible
space curve rs and the exchange interaction between adja-
cent spins (or unit tangent vectors r0s) turns into an energetic
penalty for bending. The resulting continuum Hamiltonian
ðκ=2Þ R ðr00s Þ2ds is also familiar from continuum mechanics
as a model for a slender rod with bending rigidity κ [6]. The
WLC model accurately describes a very diverse range of
polymers, including DNA [1], muscle protein [2], filamen-
tous actin [3], as well as synthetic carbon nanotubes [7,8].
Exploiting the analogy of the WLC with the Heisenberg

magnet, it can be shown [9] that for an isolated WLC in
d dimensions, the equilibrium tangent-tangent correlation
function decays exponentially,

hr0s · r0sþΔsi ¼ expð−jΔsj=lpÞ; ð1Þ

and thus defines a thermal persistence length

lp ¼ 2κ

ðd − 1ÞkBT
: ð2Þ

The analytically solvable case of a single polymer in
isolation maps well to single-molecule experiments but
bears little resemblance to the disordered environment
provided by a surrounding polymer network or even the
cytoplasm [10–12]. Although much work has been done on
both local [13–17] and global [18,19] properties of semi-
flexible polymers in disorder, it remains unknown just how
much of the WLC survives in the presence of a disordered
environment. The exponentially decaying tangent-tangent
correlation function in Eq. (1) might, for example, turn into
some nonexponential function of Δs, or it might remain
exponential and thus define a renormalized persistence
length, which then may or may not agree with its thermal

value, given by Eq. (2). In the last case, one can imagine
that the persistence length increases (due to channel
formation [20]) or decreases (due to crumpling induced
by the obstacles) with respect to its thermal value.
For an isolatedWLC, the exponential decay described by

Eq. (1) derives from a random walk in tangent space, which
is most easily visualized by imagining a thermal ensemble
of polymers with one of their ends held clamped along a
given direction. Their free ends will then point along the
same direction if the polymers are very short, but stray
away from it diffusively if the polymers are longer.
Conversely, if the same ensemble is exposed to a quenched
random background that is in some regions more favorable
than in others, the free polymer ends will naturally gravitate
towards the more favorable regions. It has long been
established that this can give rise to a superdiffusive growth
of transverse fluctuations for directed polymers in random
media [21,22]. Recent results by Boltz and Kierfeld show
that it can also give rise to a superdiffusive growth of
tangent fluctuations for stiff semiflexible polymers exposed
to δ-correlated quenched Gaussian disorder [23]. A super-
diffusive growth of tangent fluctuations translates to a
faster decay of tangent-tangent correlations compared to an
isolated WLC, which on a scaling level can be captured by
an “effective disorder-induced persistence length” [23] that
is smaller than the thermal value Eq. (2). It also translates,
however, to a tangent-tangent correlation function decaying
faster than exponentially, and thus does not define a
persistence length in the strict sense of Eq. (1).
To find out whether a renormalized persistence length in

the strong sense of Eq. (1) might be observed under more
realistic conditions, we have performed extensive numeri-
cal simulations of two-dimensional semiflexible polymers
in a quenched equilibrium hard-disk fluid. As we demon-
strate below, this disorder-averaged ensemble of test
polymers indeed exhibits a renormalized persistence length
in the strong sense, which can account also for the
dominant effect of the crowding onto the polymer end-
to-end distribution. This suggests that even if a shape
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analysis of microscopic in vivo imagery seems to agree
perfectly well with standard WLC results, the persistence
length inferred from the data may deviate significantly from
the polymer’s thermal persistence length that obeys Eq. (2).
For sufficiently stiff polymers, we find that the renormal-
ized persistence length can be determined uniquely from
the thermal persistence length and an auxiliary quantity that
characterizes the disordered environment. This feature,
which is known to hold true in the double asymptotic
limit of high stiffness and δ-correlated Gaussian disorder
[23,24], but to our knowledge never has been observed
in a more realistic setting, opens a novel way to employ
polymers of known stiffness as quantitative probes of
molecular crowding.
Our simulations are based on the discrete representation

of the polymer, which is constrained to lie in a plane
(d ¼ 2). The discrete (Heisenberg) and continuum (WLC)
forms of the Hamiltonian read

H ¼ −
κ

b

XN−1

i¼1

ti · tiþ1 ≃ κ

2

Z
L

0

ðθ0sÞ2ds: ð3Þ

The unit tangent r0s at arclength position s ¼ ib, corre-
sponding to the ith spin ti ≡ ðriþ1 − riÞ=b, has been
identified with its angle θs in the plane. It diffuses freely
on the unit circle as a function of the arclength, so that the
increments Δθ are Gaussian distributed according to

1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðΔθÞ2
2σ2

�
; σ2 ≡ kBT

κ
Δs: ð4Þ

This induces an exponential decay of tangent correlations,
which yields, by comparison with Eq. (1), the thermal
persistence length lp ¼ 2κ=kBT. In the following, we
subject the polymer to a random, quenched, and sta-
tistically isotropic background potential VðrÞ. In contrast
to earlier analytical works on the subject [18,19], we are
free to do away with the simplifying assumptions of a
vanishing correlation length or a Gaussian distribution of
potential energies; instead, we adhere closely to the spirit
of molecular crowding by assuming sterically interacting
obstacles that are small compared to the polymer, but still
large on the monomer scale. As a paradigmatic represen-
tative of steric disorder, we consider an equilibrated (but
quenched with respect to the polymer) hard-disk fluid at
several area filling fractions ϕ, ranging from 40% to the
verge of the freezing transition at ϕ ≈ 70% [25]. Then VðrÞ
takes the values∞ or 0, depending on whether the polymer
penetrates any of the disks or not. Since in an unbounded
quenched system, the polymer as a whole will gravitate
towards ever more favorable regions [18], thus, in our case,
producing a trivial ensemble of straight rods in the limit of
large persistence lengths and infinitely large systems, we
eliminate the dependence on system volume by fixing one
polymer end at the origin, r0 ¼ ð0; 0Þ, which one might

think of as a membrane-bound anchor point in the context
of biopolymers in cells.
The extreme strength and density of environmental

interactions present a formidable challenge to conventional
Monte Carlo simulation schemes, which we found hard
to overcome even using a sophisticated multicanonical
histogram reweighting procedure [26]. We have, therefore,
adapted a breadth-first growth algorithm [27] that resolves
this difficulty by circumventing energy barriers instead of
trying to cross them [20,26]. For a given disorder realiza-
tion, the algorithm starts with an ensemble of monomers
fixed at the origin and then performs N − 1 successive
growth steps to extend each ensemble member to a polymer
of the desired length. During each growth step, every
polymer in the ensemble branches out into a small set of
new trial configurations through the addition of monomers
pointing in random directions. This incurs a severalfold
increase of the ensemble population. Next, the Boltzmann
weight of each new trial configuration is calculated. Each
trial configuration is then either eliminated or replicated
probabilistically, such that (i) the overall ensemble pop-
ulation is held approximately constant to prevent memory
and processing time requirements from growing exponen-
tially, and (ii) the occurrence probability of any given
configuration agrees with its equilibrium probability
∝ expð−βH½frig�Þ, thus establishing thermal equilibrium
after each growth step.
We analyze our numerical data first in terms of the

length-averaged tangent correlation function

CðΔsÞ≡ 1

L − Δs

Z
L−Δs

0

hts · tsþΔsids; ð5Þ

where the overbar denotes the additional disorder average.
As demonstrated in Fig. 1, CðΔsÞ still decays exponentially
in the mean. Disorder-induced nonexponential modulations
are found to decay in amplitude as the thermal persistence
length lp ¼ 2κ=ðkBTÞ increases compared to the obstacle
size D and the polymer length L—or, equivalently, upon
decreasing the temperature T. Already at modest thermal
persistence lengths lp ≈ L=2, a value easily realizable in
experiment with filamentous actin or carbon nanotubes, the
deviations from perfect exponentiality nowhere exceed 3%.
This behavior, which we would not necessarily have
anticipated, justifies the notion of a persistence-length
renormalization [28]. Every disorder-averaged polymer
ensemble defined by a thermal persistence length and a
given density and size of background disks can therefore
be characterized by an apparent renormalized persistence
length l�

p inferred from fitting exp½−Δs=l�
p� to Eq. (5), as

exemplified in Fig. 1.
The fit results are shown in Fig. 2 for two representative

disorder filling fractions ϕ and thermal persistence lengths
lp between 2D and 10D. The total polymer length L is 10
disk diameters D and the discretization length b ¼ D=5.
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The inferred values for l�
p systematically decrease with

increasing disorder filling fraction for all but the smallest
thermal persistence length lp ¼ 2. While for δ-correlated
Gaussian disorder, the renormalized persistence length l�

p
should actually change with L [23], no significant L
dependence of l�

p can be detected within the range of
contour lengths accessible in our simulations [29]. As L in
our simulations is comparable to the thermal persistence
length lp, and several times larger than the obstacle size,
these contour lengths should closely approximate typical
experimental conditions in cell biophysics.
The observed exponential scaling of tangent-tangent

correlations implies that the renormalized persistence
length l�

p still derives from a diffusion process in tangent
space (as for a free WLC), albeit with a renormalized
diffusivity. It is useful to note at this point that our model
system exhibits, in the limit of vanishing obstacle size
D → 0 and diverging persistence length lp → ∞, the
so-called tilt symmetry [23,24]. It causes the disorder-
averaged angular fluctuations to separate into an unper-
turbed, “thermal” part and a disorder-induced part.
Together with the observed L-independent persistence
length renormalization, we thus find the asymptotic relation

hðΔθ2Þi=ð2ΔsÞ ¼ 1=l�
p ¼ 1=lp þ 1=lD

p ; ð6Þ

which defines a “disorder persistence length” lD
p ðϕ; D;lpÞ

that should converge onto an lp-independent master curve,
in the limit lp → ∞. This prediction is in fact well
supported by our data, despite the finite size of the
obstacles; see Fig. 2 (bottom). As a consequence, we
can even rationalize the form of this master curve, on a
scaling level. Namely, the pure disorder effect onto the
polymer conformation may simply be represented as a

succession of D-sized deflections, separated by some
distance l that roughly corresponds to the “mean free
path” between subsequent polymer-obstacle collisions.
Each real-space deflection of size D amounts to a rota-
tion δθ ¼ D=l in tangent space, hence giving rise to a
disorder persistence length lD

p ¼ 2l3=D2. The mean
free path l should scale with ϕ−1=2 at small disorder
densities and approach a value on the order of D at
hexagonal close packing, lðϕhcp ≈ 90.7%Þ ≈D. Indeed,
we find that with the semiempirical form l=D ≈
5.3ðϕ−1=2 − ϕ−1=2

hcp Þ þ 1, the argument provides an accurate
analytical parametrization of the renormalized persistence
length l�

pðϕ; D;lpÞ,

D=l�
p ≈D=lp þ

1

2
½5.3ðϕ−1=2 − ϕ−1=2

hcp Þ þ 1�−3: ð7Þ

Figure 2 compares Eq. (7) and its polymer-independent
asymptotics for lp → ∞,

l�
p ∼ lD

p ðϕ; DÞ ≈ 2D½5.3ðϕ−1=2 − ϕ−1=2
hcp Þ þ 1�3; ð8Þ

to our numerical data. Note that both l�
p and lp can

be determined experimentally, so that lD
p ¼ l�

pðlp ≫ DÞ
provides a practical quantitative measure of the environ-
mental disorder strength. Equation (8) and possible refine-
ments for polydisperse obstacle sizes might thus prove
useful in future attempts to quantify cellular crowding in
terms of the density and size (distribution) of the steric
obstacles.
Although effective semiflexibility reemerges on the

global level of tangent correlations, more localized observ-
ables must bear witness to the presence of disorder
correlations, allowing one to distinguish experimentally

FIG. 1 (color online). Numerically obtained disorder-averaged tangent correlation function C as a function of the reduced backbone
distance for background filling fractions ϕ ¼ 60%, 70% and thermal persistence lengths lp=D ¼ 2; 3; 4; 6; 8; 10 (from bottom to top).
Solid lines indicate our exponential fits CðΔsÞ ¼ expð−Δs=l�

pÞ. For stiff polymers (lp ≳ 5D) the relative error of the exponential fit
remains below 3% (bottom panels).
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between “true” and “renormalized” semiflexibility, and
providing further information on the nature of the obstacles
and their correlations. Here, we discuss the disorder-
averaged radial distribution function,

PðrÞ≡ 2πrhδðr − rL þ r0Þi; with r≡ jrj; ð9Þ

as an important example of such more local observables. As
seen from Fig. 3, PðrÞ picks up the fluid structure of the
background, as the ensemble branches out inside the more
expansive voids and circumvents denser regions. To a first
approximation, PðrÞ factorizes into two contributions: the
free WLC radial distribution [30,31] with the renormalized
persistence length l�

p and a factor weighing the relative
abundance of void space at a given distance r. As
demonstrated in Fig. 3, the latter is well represented by
the “void space distribution function”,

gvoidðrÞ ∝ r−1
Z

dr0δðjr0j − rÞe−βVð0Þe−βVðr0Þ; ð10Þ

a close cousin to the radial distribution function known
from liquid-state theory.

Our results suggest that the molecular crowding in the
cytoplasm of cells will crumple embedded cytoskeletal
polymers. Although we are not the first to predict that a
quenched disordered background should induce a renor-
malized persistence length [23], we were able to show
explicitly that tangent correlations remain exponential,
even at the highest filling fractions and for finite obstacle
size. This indicates that the common practice of performing
a static shape analysis of single fluorescently labeled
polymers in vivo or in in vitro reconstituted polymer
solutions and networks requires special caution. It may
not yield a reliable estimator of intrinsic polymer stiffness,
even if its results look deceptively consistent with the WLC
model. In spite of the modest size difference between the
polymer length and the range of background correlations,
we found that, for sufficiently stiff test polymers, the
renormalized persistence length is uniquely determined
in terms of the thermal persistence length lp and a
“disorder persistence length” lD

p that characterizes the
ambient disorder. On this basis, polymers of known
intrinsic stiffness can be used as generic quantitative probes
of molecular crowding. With our simple formula for the
renormalized persistence length, their tangent correlations
and radial distribution are conveniently analyzed in terms
of the background disorder parameters.
It is an intriguing question whether our findings general-

ize to three dimensions. We assume they do, at least for
generic kinds of disorder such as a random distribution of
spheres or bent rods: neither the concept of tilt symmetry
nor the idea of random polymer-obstacle collisions are
specific to two dimensions. Our “disorder persistence
length” has a simple definition and could, in principle,
be measured using standard video microscopy techniques
analyzed in the usual way (by measuring tangent-tangent
correlations and radial distribution functions). Therefore,
we hope to inspire not only further numerical or analytical

FIG. 3 (color online). Numerical disorder-averaged radial
distribution functions PðrÞ for thermal persistence lengths
lp=D ¼ 2; 6; 8; 10 (data) and ϕ ¼ 70%. Solid lines represent a
parameter-free comparison with free WLC radial distribution
functions evaluated for the corresponding renormalized persist-
ence lengths l�

p obtained from Fig. 2 and multiplied by the
normalized void distribution function gvoidðrÞ (dashed).

FIG. 2 (color online). Renormalized persistence lengths l�
p

resulting from the exponential fits in Fig. 1 for thermal persistence
lengths lp=D ¼ 2; 3; 4; 6; 8; 10 (upper panel: solid lines, from
bottom to top) and Eq. (7) (dashed). The maxima of the relative fit
errors (lower panel of Fig. 1) are indicated as bars (middle panel).
Forlp>2D, the disorder persistence lengthlD

p ¼ð1=l�
p−1=lpÞ−1

(bottom panel) quickly converges onto a single lp-independent
master curve as implied by Eq. (8) (dashed line).
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work on the matter, but also experimental studies under
physiological conditions. In this context, it would also be
interesting to extend our analysis to the case of annealed
disorder, which has recently been addressed experimentally
for flexible polymers [32].
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Note added in the proof.—Recently, the authors of
Ref. [23] pointed out to us that the proposed scaling of
lD
p ∼ l3=D2 could be reconciled with their Flory argument,

which suggests lD
p ∝ g−1 [cf., their Eq. (40)], if the typical

scale g of disorder interactions is identified with the
bending energy expended per deflection event, i.e.,
g ¼ κðD=lÞ2=l .
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