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Magnetic relaxation is one of the dominating features of magnetization dynamics. Depending on the
magnetic structure and the experimental approach, different magnitudes of the damping parameter are
reported even for a given material. In this study, we experimentally address this issue by accessing the
damping parameter in the same magnetic nanotracks using different approaches: local ferromagnetic
resonance (α ¼ 0.0072) and field-driven domain wall dynamics (α ¼ 0.023). The experimental results
cannot fully be accounted for by modeling only roughness in micromagnetic simulations. Consequently,
we have included nonlocal texture induced damping to the micromagnetic code. We find excellent
agreement with the observed increased damping in the vortex structures for the same input Gilbert alpha
when texture-induced nonlocal damping is included.
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Different aspects of magnetization dynamics are involved
in magnetic storage technologies based on magnetic
domains or on domain wall (DW) dynamics in extended
layers and nanostructures [1–6].Magnetic nanoelements are
not only in focus in view of their technological potential but
are also often used as test systems for the investigation of
debatedmicroscopicmechanisms involved inmagnetization
dynamics such as, for example, coupling to spin-currents
[7–9], heat gradients [10], and the role of spin-orbit coupling
in DW dynamics [11,12]. As soon as magnetic textures
are dynamically manipulated, one faces dissipation, i.e.,
the relaxation of excited magnetic textures towards an
equilibrium state. Described by Gilbert as a viscous force
[13,14], it is modeled as αm × _m, where m is the local
magnetization unit vector, the dot denotes the time deriva-
tive, and α the Gilbert damping parameter. In thin ferro-
magnetic films, the main microscopic mechanism which
governs the magnitude of α in absence of defects is
dissipation of angular momentum to the lattice via spin-
orbit coupling [15,16]. Other established mechanisms
that increase the effective damping lie in magnetic inho-
mogeneities and two magnon scattering [17]. In order to
quantitatively access and study complex effects such as
current-induced domain wall dynamics, a perfect experi-
mental knowledge of α is required. However, there exists a
large spread of reported values even for the prototypical
material Ni80Fe20 depending on details of the experimental
method used for its determination. The most common
way of evaluating α is to perform ferromagnetic resonance
(FMR) experiments. While damping values for Ni80Fe20
between α ¼ 0.006 and α ¼ 0.008 are commonly reported
by FMR, values needed to interpret DW dynamics range
from α ≈ 0.005 to α > 0.02, an issue which has been
addressed numerically recently by addressing the role
played by roughness [18,19]. Besides, when considering

the dynamics of nonuniform magnetization distributions
such as DWs, it has recently been proposed that strong
spatial gradients lead to an additional texture-induced non-
local channel of relaxation [20–22]. While experimental
studies of damping in single elliptically shaped nanomag-
nets [23] and arrays of nanodots [24] have been carried out,
no experimental data exist that connect α measured in
magnetic racetracks by FMR to α determined using domain
wall motion.
In this Letter, we investigate the contribution of texture-

induced nonlocal magnetic damping in magnetic racetracks
with vortex domain walls. Our experimental approach
consists in assessing α in the same nanostructure using
two approaches: local FMR and field-driven vortex domain
wall dynamics using magneto-optic measurements. On
one hand, we use time-resolved scanning Kerr microscopy
(TR-MOKE) to perform local FMR on single nanostripes.
On the other hand, in exactly the same nanostripes, DWs
are injected and field-driven displacements are analyzed
by wide-field Kerr microscopy. To undermine our findings,
we have included a texture-induced nonlocal damping term
in a micromagnetic solver [21] as well as edge and surface
roughness. This study aims at lifting the controversy regard-
ing the value of α seemingly depending on the experimental
approach. Furthermore, we quantitatively evaluate the con-
tribution of texture-induced nonlocal damping.
The samples under study are Ni80Fe20 nanostripes of

various widths (0.5–1.25 μm) and 20 nm thickness, capped
by 3 nm of Al [Fig. 1(a)]. At one extremity, an elliptical
nucleation pad is attached while the other one terminates
as a tip to favor DW annihilation [Figs. 1(a) and 1(b)].
These magnetic nanostructures are fabricated on top of Au
coplanar waveguides used for continuous wave high fre-
quency excitation to perform FMR and for field-driven DW
dynamics by connecting either a high frequency generator
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or a pulse generator to the 50 Ohm matched devices. This
dynamic field is generated along the long axis of the stripe
[i.e., x axis, Fig. 1(a)]. Magnetic structures and coplanar
waveguides are electrically decoupled by 7 nm of Al2O3.
A standard procedure of image difference (see

Supplemental Material [25]) is applied in order to enhance
the magnetic contrast. The access to different magnetic
states allows us to either detect the DW position [Fig. 1(c)]
or the DW displacement [Figs. 1(d) and 1(e)]. Pushed by a
magnetic field pulse, DWs move, increasing the size of the
domain favored by the field direction. Subsequently, back
and forth displacements [Fig. 1(e)] can be analyzed as
function of the field pulse magnitude, see Fig. 2(a).
In this study, we analyze the characteristics of the steady-

state regime [26] to extract the effective damping:

δq
ΔT

¼ γ

α

Z
μ0HxðtÞdt −

1

α

Z
dϕ
dt

dt; ð1Þ

where δq is the DW displacement (difference between the
final and initial generalized position),ϕ the generalized wall
angle [27],ΔT the Thiele width [28,29], γ the gyromagnetic
ratio, μ0 the vacuum permeability, and HxðtÞ the time-
dependent magnetic field amplitude along the x axis. The
second term on the right-hand size of Eq. (1) has no
contribution in the steady-state regime since no DW trans-
formation occurs [27,30] andwill be neglected for the fitting
procedure. At constant field pulse length, the quantity
δq=ΔT increases linearly as a function of the field amplitude
with a slope inversely proportional to α. Note that Eq. (1) is

exact as long as a generalized position and Thiele width are
considered [27].
Figure 2(a) presents the quantity δq=ΔT as a function of

the applied field magnitude which allows us to directly
compare stripes with different widths. Thiele widths (ΔT)
are computed by micromagnetic simulations and lead to:
28.9, 41.8, and 46.6 nm for 500, 1000, and 1250 nm wide
stripes, respectively. Note that ΔT is not independent of the
applied field since the wall structures slightly deform in the
steady-state regime. Yet, the deformation is less than 3%
and can therefore be neglected. Interestingly, even though
DWs have different pinning fields for different stripe
widths (≈0.62, 0.55, and 0.43 mT for 500, 1000, and
1250 nm wide stripes, respectively), their normalized
dynamics (δq=ΔT) are identical in the steady-state regime.

(b)

(c)

(d)

(a)

(e)

FIG. 1 (color online). Domain wall dynamics observed by
wide-field Kerr microscopy. (a) Schematic diagram of the
sample layout. (b) Optical image of the magnetic structure.
The stripe width is 1 μm and the dimension of the ellipse part
is 15 × 7.5 μm2. (c) Magnetic contrast after injecting DWs.
(d) Magnetic contrast after pushing the DWs of (c) by a second
field pulse. Magnetic contrast images are obtained by computing
difference images, see Supplemental Material [25]. (e) Series of
back and forth displacements of one DW in a 1.2 μm wide stripe.
Arrows represent the field pulse direction.
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FIG. 2 (color online). (a) Normalized DW displacement
(δq=ΔT ) as a function of applied magnetic field amplitude for
stripes of different widths. The black straight line is a linear fit of
DW dynamics in the linear regime. The dashed and dot-dashed
lines are the expected behaviors in the steady state regime for
α ¼ 0.023 and α ¼ 0.008. (b) Computed normalized DW dis-
placement as a function of the applied magnetic field amplitude
for a 512 wide and 17 nm thick Ni80Fe20 stripe for a perfect stripe
(blue triangles) and with 3.5% surface roughness (purple dots)
and with 3.5% surface roughness and texture-induced damping
(red squares). Open (filled) symbols stand for DW dynamics
above (below) the Walker breakdown.
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By fitting the slope of this regime, the effective damping
parameter is determined to be α ¼ 0.023� 0.005.
The main objective of this study is to compare magnetic

damping obtained from field-driven DW dynamics to FMR.
This is achieved by performing time-resolved Kerr micros-
copy on the exact same set of stripes as the ones used for DW
dynamics. A static applied magnetic field is swept along the
y axis [Fig. 1(a)] while the frequency of the rf field is kept
constant. The amplitude of the polar Kerr signal is acquired
as a function of the applied static field revealing the different
magnetic resonances of the magnetic system [Figs. 3(a)
and 3(d)]. The pieces of information extracted at a given
frequency are the resonant field μ0H0 and the linewidth
μ0ΔH. The finite size of the stripes leads to the presence
of nonuniform modes in the spectra. The analysis is there-
fore performed using a multi-Lorentzian fit. The resonant
field as function of excitation frequency is shown in
Figs. 3(b) and 3(e) and fitted using Kittel’s formula which

is expressed in the case of an extended magnetic layer
without anisotropy as ω ¼ μ0γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þMSÞ

p
with ω ¼

2πf the angular frequency and H0 the resonant field.
The gyromagnetic ratio γ plays a non-negligible role in
the determination of the damping parameter in both DW
dynamics and FMR measurements and is the only fit
parameter. The saturation magnetization (μ0MS ¼ 0.92 T)
has been measured independently by superconducting
quantum interference device measurements on a reference
layer. The Kittel equation is exact for a uniform mag-
netization distribution in an extended layer for which the
ellipse part of the structure provides a good approxima-
tion. However, its finite size leads to higher harmonic
modes [31], easily identified by imaging the structure at
the respective resonant field for a given excitation
frequency [see inset of Fig. 3(b)]. The fit of the main
mode results in a gyromagnetic ratio value of
γ ¼ 1.88� 0.02 × 1011 T−1 s−1. Regarding the stripe part
of the structure, the analysis is more delicate since in
order to study the exact same set of structures as the one
used for DW dynamics, the stripes are magnetized
transversally to their long axis. The analysis is achieved
by considering the magnetic system saturated along a
uniaxial anisotropy axis. Kittel’s formula is thus changed
to: ω ¼ μ0γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðH0 þHKÞðH0 þHK þMSÞ
p

, where HK is
the uniaxial anisotropy field, also considered as a fit
parameter. In this configuration, edgemodes [32] are visible
at higher fields [see Fig. 3(d)]. Figure 3(e) displays only the
main modes for stripes with different widths. Fitting these
results provides γ ¼ 1.86� 0.02 × 1011 T−1 s−1.
Once the gyromagnetic ratio is obtained, the Gilbert

damping parameter can be extracted from the analysis of
the linewidth (μ0ΔH). Figures 3(c) and 3(f) display μ0ΔH
as a function of the excitation frequency for the main modes
of the ellipse and stripe parts of the structures. In the case of
uniform magnetization distributions in an extended mag-
netic layer, the following relation holds: μ0ΔH ¼ αω=γ.
By linearly fitting the measured linewidths as a function of
the excitation frequency [Figs. 3(c) and 3(f)], one obtains
values for the intrinsic Gilbert damping parameter α on
the ellipse part: α ¼ 0.0079� 0.0003 and on the stripe
parts: α ¼ 0.0072� 0.0007.
These values are in the range of the ones commonly

reported for FMR on full magnetic films and on nano-
magnets. However, they are 2.5 times lower than the values
extracted from field driven DW dynamic experiments
performed on the exact same stripes. In order to stress this
difference, we display in Fig. 2(a), the expected behavior of
the the steady-state regime with α ¼ 0.008 and in Fig. 3(f)
display the expected frequency dependence of the linewidth
(μ0ΔH) for α ¼ 0.023. One can clearly note the discrepancy
with respect to the measured data.
Interestingly, no size-dependent effect can be noticed.

Similarly to the quantity δq=ΔT extracted from the field-
drivenDWdynamics experiments, the frequency-dependence
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FIG. 3 (color online). Local FMR analysis of the nanostruc-
tures. Resonance spectra on the ellipse (a) and stripe (d) parts of
the structure. Dependence of the resonant frequency on the
resonant field: (b) measured on the ellipse part where the main
mode and two harmonics can be evidenced (inset); (e) measured
on the stripe part for which only the main modes for three
different stripe widths are shown. Main modes linewidths for the
ellipse (c) and stripe (f) parts of the structure as function of
frequency. The straight black lines represent the linear fit as a
function of frequency of μ0ΔH, whereas the dashed black lines
represent α ¼ 0.023.
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of the linewidth does not show any significant dependence
on the stripe width. Above all, the facts that i) the extrinsic
contribution, i.e., zero frequency offset in Figs. 3(c)
and 3(f) is similar for both the ellipse and stripes parts
(≈0.1 mT) and that ii) no significant difference for stripes
with various widths is observed, exclude a predominant
effect of the nanostructuring on the damping.
As discussed in Refs. [18,19], roughness plays a major

role in DW dynamics. Figure 2(b) presents a micromag-
netic simulation of a vortex DW in a 512 nm wide and
17 nm thick stripe subjected to 23 ns field pulses. The cell
size is approximately 5 by 5 by 17 nm. We define the
domain wall displacement as the difference between the
final and initial position of the vortex core in the domain
wall. Avalue of α ¼ 0.008 has been evaluated using Eq. (1)
for the perfect wire, which corresponds to the input value
for all micromagnetic simulations. From DW dynamics
data, pinning fields and nonzero offset (or Hi, see Fig. 2)
are two important indicators of roughness. For a perfect
stripe, as expected, the two latter are equal to zero. As soon
as roughness is implemented, a finite pinning field is
reproduced as well as a finite nonzero offset. This can
also be understood in the frame of Eq. (1) by a small
contribution of the second term due to the reduction of the
DW inertia [30,33] by the roughness. Surface roughness is
modeled as a variation of the saturation magnetization
between 2% and 6% on a length scale of approximately 10
by 10 nm, which mimics thickness variations, see Ref. [18].
The introduction of surface roughness (3.5%) leads to an
increase of the effective damping to α ≈ 0.011 and allows
us to fairly well reproduce pinning field and nonzero offset
[Fig. 2(b)]. We have additionally tested other ways of
modeling disorder (Fig. 4) such as edge roughness which
was modeled by removing different parts of the first or

second outermost cells of the magnetic material on each
side of the stripe [34,35].
Figure 4 summarizes the extracted relative ratio

αinput=αeff (with αinput ¼ 0.008) for a large set of simu-
lations including different types of roughness. The increase
of the degree of disorder leads indeed to a reduction of the
slope but the dominant effect is the increase of the pinning
field and of Hi (Fig. 2) which eventually hides the steady-
state regime, clearly inconsistent with the experimental
data. In order to emphasize this point, αinput=αeff is
displayed as function of the quantity [ðHW −HiÞ=HW]
with HW the Walker field. Note that in the case of a perfect
stripe, ðHW −HiÞ=HW ¼ 1 and αinput=αeff ¼ 1.
To explicitly account for the role of conduction electrons

in transferring angular momentum away from regions
of magnetization varying strongly in space and time,
Zhang et al. [21] have developed an analytic expression
for conducting ferromagnets. The spatially varying time-
dependent magnetization generates a nonuniform spin
current which carries away the nonequilibrium angular
momentum and energy, resulting in the tensorial form of
the damping term: m × ðD · _mÞ with D, a 3 × 3 tensor
whose elements are the sum of the conventional intrinsic
Gilbert damping (α) and a component involving magneti-
zation gradients, weighted by a new material-dependent
parameter η as defined in Ref. [21]:

Dij ¼ αδij þ η
X

n¼x;y;z

ðm × ∂nmÞiðm × ∂nmÞj; ð2Þ

with δij, the Kronecker symbol. This expression has been
included in the micromagnetic code [36].
In Fig. 4, results are shown including (η ¼ 0.07 nm2)

and excluding (η ¼ 0) texture-induced nonlocal damping.
While solely introducing roughness fails reproducing the
large increase in damping observed in DW dynamics, a
nonzero η clearly allows a DW dynamics similar to
experimental observations (pinning field, Hi, and αeff ).
Note that different thicknesses and MS have been tested,
evidencing that these parameters affect mainly the Walker
field and not the effective damping. This strengthens the
role played by the texture-induced nonlocal damping.
Our experimental approach has allowed us to independ-

ently evaluate the effective damping of DW dynamics, the
intrinsic alpha and the role of roughness. Including the
nonlocal expression, it becomes possible to reproduce
the experimental DW dynamics behavior with a fairly
good agreement [Fig. 2(b)] for η ¼ 0.07 nm2 showing that
high spatial gradients located at the vortex core position
play a dominant role in DW dynamics.
To conclude, in this study, we have experimentally

assessed the damping parameter α on the same set of
nanostripes by two complementary approaches: field-
driven domain wall dynamics and local ferromagnetic
resonance. The effective damping parameter extracted from

FIG. 4 (color online). Results of the micromagnetic domain
wall displacement simulations for a 512 nm wide stripe of
Ni80Fe20. αeff has been obtained from the slope of the linear
part of displacement vs field plots up to the Walker breakdown
field (Hw), and Hi is the intersect of that straight line with the
field axis. αinput is 0.008. The different parameters used for each
simulation are listed in the Supplemental Material [25].
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DW dynamics is about 2.5 times larger than the one
measured by local FMR. Even if roughness plays a role
in this increase, it can not be the only cause. Therefore,
we have been able to assess the texture-induced nonlocal
part of the damping by quantitatively determining its
weighting parameter in the case of vortex wall dynamics:
η ≈ 0.07 nm2.
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