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The possibility of realizing non-Abelian statistics and utilizing it for topological quantum computation
(TQC) has generated widespread interest. However, the non-Abelian statistics that can be realized in most
accessible proposals is not powerful enough for universal TQC. In this Letter, we consider a simple bilayer
fractional quantum Hall system with the 1=3 Laughlin state in each layer. We show that interlayer tunneling
can drive a transition to an exotic non-Abelian state that contains the famous “Fibonacci” anyon, whose
non-Abelian statistics is powerful enough for universal TQC. Our analysis rests on startling agreements
from a variety of distinct methods, including thin torus limits, effective field theories, and coupled wire
constructions. We provide evidence that the transition can be continuous, at which point the charge gap
remains open while the neutral gap closes. This raises the question of whether these exotic phases may have
already been realized at ν ¼ 2=3 in bilayers, as past experiments may not have definitively ruled them out.
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Introduction.—There is currently intense interest in the
realization of exotic quantum phases of matter that host
quasiparticles with non-Abelian statistics [1,2], partially
due to the possibility of topological quantum computation
(TQC). While there are many promising candidate plat-
forms for realizing non-Abelian statistics, almost all of
them have the drawback that they are not powerful enough
to realize universal TQC.
Recently, it has been proposed that a wide class of non-

Abelian defects can be synthesized by starting with simple
double-layer or single-layer fractional quantum Hall (FQH)
states and properly including certain spatially nonuniform
patterns of interlayer tunneling [3–5] or superconductivity
[6–9]. Subsequently, it was shown that by coupling these
engineered non-Abelian defects in an appropriate manner,
it is possible to realize exotic non-Abelian phases that are
powerful enough for universal TQC [10–12]. However,
engineering the interactions of these defects in a physically
realistic setup is a major challenge. Nevertheless, these
studies suggest the possibility that these exotic, computa-
tionally universal non-Abelian phases might be realized in
a simpler fashion, by starting with either (i) conventional
double layer FQH states [such as the (330) state, which
contains independent 1=3 Laughlin states in each layer] and
increasing the interlayer tunneling uniformly in space, or
(ii) conventional single layer FQH states, and uniformly
increasing the coupling to a superconductor.
In this Letter, we present two basic advances, mainly in

the double layer context with interlayer tunneling. First,
we show that the appearance of these computationally
universal non-Abelian states can be understood in the thin
torus limit, where the interlayer tunneling is taken to be
uniform in space. In this limit we systematically derive
the properties of the quasiparticles for large interlayer
tunneling. These include the so-called “Fibonacci”

quasiparticle, whose non-Abelian braiding statistics allow
for universal TQC. Second, we find the possibility of a
continuous quantum phase transition between the conven-
tional bilayer FQH states and these exotic non-Abelian
ones, as the interlayer tunneling is increased. We show
that this theory is described by a SUð3Þ1 × SUð3Þ1 →
SUð3Þ2 Chern-Simons-Higgs transition, and also pro-
vides a many-body wave function for the non-Abelian
state. The startling agreement between these distinct
approaches, and with the earlier constructions
[10,11,15], provides evidence that this non-Abelian state
can be stabilized with uniform tunneling.
Several years ago [16,17] it was argued that the (330)

state, in the presence of interlayer tunneling, could con-
tinuously transition to a different non-Abelian FQH state,
known as the Z4 Read-Rezayi FQH state [18], whose non-
Abelian braiding statistics alone is not powerful enough for
universal TQC. Combining the earlier results with those of
the present Letter leads to a rich global phase diagram at
total filling fraction ν ¼ 2=3 in bilayer systems, which we
explore (see Fig. 1).
Thin torus limit.—For a wide variety of FQH states, it

was found [19–23] that the wave function in the thin torus
limit (Lx=Ly ≪ 1) is smoothly connected to the fully two-
dimensional wave function (Lx=Ly ∼ 1), where Lx and Ly
are the lengths of the torus in the two directions. This thin
torus limit, which we review below, allows for a simple
understanding of fractionalization in the FQH state in terms
of one-dimensional fractionalization [24].
In the Lx=Ly → 0 limit and at filling fraction 1=n, the

dominant contribution to the pseudopotential Hamiltonian
for the Laughlin state is

Hn ¼
X
i

X
0<r<n

Ur;0n̂in̂iþr; Ur;0 ¼ gr;0e−2π
2r2=L2

x : ð1Þ
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i indexes the lowest Landau level orbitals, extended in the
x direction and localized in the y direction, gr;0 ¼ 1; r2

when n ¼ 2, 3, respectively. Since Hn involves only
commuting number operators (n̂i’s), it can be immediately
diagonalized. At 1=3 filling, the following charge-density-
wave patterns of electrons in the occupation basis minimize
H3: jgi1¼ j100100100 � � �i, jgi2¼ j010010010 � � �i, jgi3 ¼
j001001001 � � �i. In the two-dimensional limit, these three
ground states evolve into the three topologically degenerate
ground states of the 1=3 Laughlin state on a torus [25–27].
The fractional quasiparticles can be understood as

domain walls between these different patterns. For exam-
ple, there is an excitation with q ¼ e=3 charge at the
domain wall between the [100] and [010] patterns, i.e.,
½100�½010�≡ ½…100100100j010010…�, because there are
three consecutive zeros, which leads to a deficit of charge
e=3, according to the Su-Schrieffer counting [24]. The
same is true for [010][001] and [001][100] patterns.
In general, the domain wall between the ground states
jgii and jgiðiþkÞ%n corresponds to a quasiparticle with
electric charge q ¼ ke=n.
Now let us consider a double layer system, consisting of

two identical layers, in the presence of interlayer tunneling.
In the thin torus limit,

Htt ¼
X

i
0<r<n

ðUα;β
r;0 n̂iαn̂iþrβ − t⊥c†iασxαβciβ þ H:c:Þ; ð2Þ

where α; β ¼ ↑ð↓Þ refers to the top (bottom) layer,

σx ¼
�
0 1

1 0

�
;

U↑;↑
r;0 ¼ U↓;↓

r;0 , and U↑;↓
r;0 ¼ U↓;↑

r;0 parametrize the intra- and
interlayer interactions, respectively. Htt is invariant under
the Z2 layer exchange symmetry ci↑↔ci↓. In the two-
dimensional system, as long as interlayer tunneling t⊥ is

much smaller than the bulk gap in each layer, no phase
transition is expected. As interlayer tunneling is increased,
at some point the bulk gap can close and reopen in a
different topological phase. In order to understand the
resulting phase in a tractable limit, we will study the effect
of interlayer tunneling in (2).
For simplicity, let us first consider only vertical tunneling,

t⊥ and ignore the interlayer interactions, U↑↓
r;0 ¼U↓↑

r0 ¼ 0.
When t⊥ ¼ 0, Htt has 9 exactly degenerate ground states,
with the degeneracy protected by the independent translation
symmetries in each layer, and the layer exchange symmetry.
When t⊥ ≠ 0, the independent translation symmetries in
each layer reduce to a single combined translation symmetry.
The 3 Z2 layer symmetric states, which we can label as

jD1i≡
�
100

100

�
;

jD2i ¼
�
010

010

�
;

jD3i ¼
�
001

001

�
;

then acquire an energy splitting relative to the remaining
6 Z2 layer symmetry-breaking ground states. As t⊥ is
increased further, we find that the energy gap closes, and
the 1D system passes through an Ising phase transition [28].
On the other side of the transition, there are 3 exactly
degenerate ground states that are fully symmetric under the
Z2 layer exchange symmetry. Deep in this Z2 symmetric
phase, we can represent these states by a product over the
state in each three-site unit cell: jO1i≡QNuc

a¼1 jψ1ia, where
Nuc is the number of unit cells. Since t⊥r ∝ δr0, we have

jψ1i ¼ α1

���� 100010

�
þ α2

���� 010100

�
þ α3

���� 110000

�
þ α4

���� 000110

�
;

ð3Þ

where the other states are related by translations: TyjOii ¼
jOiþ1i. Here, αj, j ¼ 1;…; 4 are variational parameters,
chosen to minimize the ground state energy.
Therefore, for large enough interlayer tunneling, the 9

states that we started with split into 3 degenerate Z2

symmetric states fjOiig, with energy ES, 3 degenerate
states fjDiig with energy ED, and 3 remaining degenerate
Z2 antisymmetric states, with energy EA. Now, we can
consider two distinct possibilities as we take the two-
dimensional limit: either the 6 states fjOii; Diig continu-
ously evolve into 6 topologically degenerate ground states
with a gap to other excited states, or only 3 of the states
(e.g., fjOiig), evolve into 3 topologically degenerate
ground states. Based on previous studies of the thin torus
limit of the FQH states [19–22], we expect that the former

(a) (b)

(c) (d)

FIG. 1 (color online). ν ¼ 2=3 proposed global phase diagram,
for interlayer tunneling on the order of interaction strengths.
We find possible continuous transitions between four different
states, as described in the main text. m1, m2 are phenomeno-
logical parameters in the effective theory and drive the two types
of Higgs transitions. They depend on interlayer tunneling and
inter- or intralayer interactions in a way which requires further
study. The minimal quasiparticle charge e� distinguishes (b) from
the others. The others must be distinguished in principle through
detecting phase transitions in the neutral sector, or through
tunneling or interferometry measurements.

PRL 113, 236804 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

236804-2



case will likely occur when ES ≈ ED ≪ EA, while the latter
case will occur in the regime ES ≪ ED; EA. Depending on
parameters, Htt can access either regime; for example,
U↑;↓

0;0 < U↑;↓
1;0 or longer range tunneling can favor the former

case over the latter.
In what follows, we focus on the possibility where all six

states, fjOii; jDiig, evolve into six topologically degener-
ate ground states in the 2D limit. The feasibility of this
depends on microscopic details of the 2D system. This
appears to be a reasonable assumption because the results
are in remarkable agreement with the effective field theory
considerations presented below, and the earlier approach in
[10,11]. Additionally, the same assumption, when applied
to the case of the (331) Halperin state, or the bosonic (220)
state, yields results which agree with previous work [28]
[23,29–33].
It is natural to relabel the 6 ground states as follows:

[200], [020], [002] denote jDii, for i ¼ 1; 2; 3, respectively,
and [110], [011], [101], denote jOii, for i ¼ 1; 2; 3. Below,
our goal is to identify the type of topological order
associated with this phase.
First, observe that the total center of mass degeneracy

(associated with translations Ty), only accounts for a
degeneracy of 3 Therefore, the existence of 6 states
immediately signals the existence of a non-Abelian FQH
state. Recall that the quasiparticles can be understood as
domain walls between the different ground state patterns. If
we start with the state [200] and consider a domain wall
with the state [110], then from the Su-Schrieffer counting
argument we see that there is a charge e=3 quasihole. This
can be understood as the original Laughlin e=3 quasihole,
but inserted in either the top layer or the bottom layer, with
equal weight. If instead we start with the state [110] and
consider a domain wall with either [020] or [101], we see
that there is again a charge e=3 quasihole. In general, we
can ask which pairs of ground states, labeled i and j, give
rise to a charge e=3 quasihole at their domain wall. This
defines an adjacency matrix for the charge e=3 quasihole,

A ¼

0
BBBBBBBBB@

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 1 0

1 0 0 0 0 1

0 0 1 1 0 0

1
CCCCCCCCCA
; ð4Þ

where the rows and/or columns correspond to [200], [020],
[002], [110], [101], [011], respectively. More generally, let
us consider nqh quasiholes with q ¼ e=3 at positions
j1; j2;…; jnqh [34]. To do so, we start with a fixed
ground-state pattern, say [200]. At site j1, there is a domain
wall with [110], at site j2 there can be either [020] or [101]
patterns, and so on. We see that the number of possibilities
grows exponentially with nqh. It is straightforward to verify

that trðAnqhÞ gives the total number of different possibilities
on the torus. Therefore, the degeneracy of the ground state
in the presence of nqh quasihole insertions grows as λ

nqh
1

where λ1 is the dominant eigenvalue of the adjacency
matrix A. Consequently, the quantum dimension of the
quasihole operator with minimum electric charge is λ1.
Using the above adjacency matrix, the quantum dimension
of the charge e=3 quasihole is the golden ratio dqh ¼
F≡ ð1þ ffiffiffi

5
p Þ=2.

Since there are 6 degenerate ground states on the torus,
there are correspondingly 6 topologically distinct types of
quasiparticles. These include the e=3 quasiparticle
described above and it’s charge −e=3 particle-hole con-
jugate. There are also charge 2e=3 and 4e=3 quasiparticles,
which involve inserting charge e=3 or 2e=3 Laughlin
quasiparticles into both layers simultaneously. We will
label them as Vn, with charge q ¼ 2ne=3. These are
inherited directly from the (330) state, with their topologi-
cal properties unchanged. Finally, there is a neutral quasi-
particle, which we label τ. τ can be understood as inserting
an e=3 quasiparticle in the top layer and a −e=3 quasi-
particle in the bottom layer, superposed with reverse
process, −e=3 and e=3 in the top and bottom layers,
respectively. By studying the adjacency matrix, we find
that the quantum dimension of τ is also dτ ¼ F.
The adjacency matrices Ai, for i ¼ 1;…; 6, encode the

fusion rules of the quasiparticles, i × j ¼ P
kðAiÞjkk,

which dictates the number of ways quasiparticles i and j
can fuse into k [34]. We find that the quasiparticles Va are
simple Abelian quasiparticles, with quantum dimension 1:
Va × Vb ¼ Vaþb%3. Furthermore, τ × τ ¼ 1þ τ; this is the
fusion rule of the famous Fibonacci quasiparticle, whose
braiding statistics allows for universal topological quantum
computation [1]. The remaining two quasiparticles are
identified with Vaτ, for a ¼ 1; 2.
In addition to the fusion rules, we can obtain information

about the topological spins. Since the theory has a subset of
quasiparticles, f1; τg, with a closed fusion subalgebra
τ × τ ¼ 1þ τ, mathematical consistency [35] requires that
the topological spin of τ be θτ ¼ �2=5. Furthermore, the
quasiparticles Va are just the simple Abelian quasiparticles
that were present in the (330) state. Since the phase
transition occurs entirely within the neutral sector, the
topological spins of these charged quasiparticles should
remain unchanged and are given by their value in the (330)
state. Therefore, θVa

¼ a2=3. These results are summarized
in Table I.
Generalizing the above arguments to the ðnn0Þ states

gives nðnþ 1Þ=2 quasiparticles, whose fusion rules coincide
with the representation algebra of the quantum group
SUðnÞ2 [28]. Remarkably, the thin torus patterns [200],
[020], [002], [110], [011], [101], and the connection to
SUð3Þ2, have appeared previously in a completely different
context [36], in terms of the gapless, single-layer bosonic
Gaffnian wave function. See also [37,38] for other distinct
realizations of SUð3Þ2 fusion rules.
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The above results can be understood from the perspective
of the edge conformal field theory. Consider two free chiral
bosons, φ1 and φ2, such that einφ1 , einφ2 are considered to be
local electron operators. In the ðnn0Þ state, Va;b ≡ eiaφ1þbφ2 ,
for a; b ¼ 0;…; n − 1 correspond to the n2 nontrivial
quasiparticle operators. If we consider the nðnþ 1Þ=2
symmetrized operators Φa;b ¼ Va;b þ Vb;a, and continue
to treat the operators einφ1 , einφ2 as trivial, local operators,
then we find the remarkable result thatΦa;b satisfy the fusion
rules of SUðnÞ2: Φa;b × Φa0;b0 ¼ Φaþa0;bþb0 þ Φaþb0;bþa0 .
Recovering the topological spin from this procedure is more
involved, as the stress-energy tensor in the CFTalso changes
through this transition.
Effective field theory.—Here, we show that there is a

possible continuous phase transition between this non-
Abelian FQH state and the (330) state. We show that from
the point of view of the effective field theory of the (330)
state, the appearance of the state we have found is quite
natural in the presence of interlayer tunneling.
One way of understanding the effective field theory of

the (330) state is through a parton construction [39], where
we write the electron operator as cσ ¼ f1σf2σf3σ , where
σ ¼ ↑;↓ is the layer index, and fiσ are charge e=3
fermionic “partons.” This rewriting of the electron operator
introduces an SUð3Þ × SUð3Þ gauge symmetry, associated
with the transformations fσ → Wσfσ , for Wσ ∈ SUð3Þ,
which keep all physical operators invariant. The theory in
terms of electron operators can therefore be replaced by a
theory in terms of the partons faσ , coupled to an SUð3Þ
gauge field, Aσ . In the presence of a magnetic field B, the
partons feel an effective magnetic field Beff ¼ B=3. When
the electrons are at filling 1=3, the partons are then poised
to form a ν ¼ 1 integer quantum Hall state at the mean-field
level. Integrating out the partons then gives an SUð3Þ1 ×
SUð3Þ1 CS gauge theory: L ¼ ðϵμνλ=4πÞPσtrðAσ

μ∂νAσ
λþ

2
3
Aσ
μAσ

νAσ
λÞ þ jσ · Aσ. jσ is the current of quasiparticles,

which, after integrating out the partons, appear in this
theory as classical “test” charges. They correspond to the
fermionic particles or holes in the parton Landau levels, and

acquire fractional statistics after being dressed by the CS
gauge field.
Next, let us consider the effect of interlayer tunneling,

δHt ¼ −t⊥c†↑c↓ þ H:c: ¼ −t⊥ðf1↑f2↑f3↑Þ†f1↓f2↓f3↓þ
H:c:, on the mean-field state of the partons. For t⊥ large
enough, this induces a nonzero expectation value
hf†↑f↓i ≠ 0, which breaks the gauge symmetry SUð3Þ×
SUð3Þ → SUð3Þ, leaving a single gauge field A≡ A↑ ¼
A↓ at long wavelengths. Now, integrating out the partons
leads to a SUð3Þ2 CS gauge field: LCS;σ ¼ ð2=4πÞϵμνλ
trðAμ∂νAλ þ 2

3
AμAνAλÞ. At the critical point, only the

fluctuations of the electrically neutral operator f†↑f↓ will
be massless. Consequently, charged fluctuations remain
gapped across the transition.
The edge CFT of the parton mean field states is described

by a Uð6Þ1 chiral Wess-Zumino-Witten CFT. Implementing
the projection onto the physical degrees of freedom yields a
Uð6Þ1=SUð3Þ2 coset theory, with central charge c ¼ 14=5.
We can systematically obtain the topological properties of
the quasiparticles in this theory [28]. Remarkably, the result
coincides with the SUð3Þ2 fusion rules obtained from the
thin torus limit above, and the topological spins match those
of Table I exactly, with the choice θτ ¼ 2=5. We conclude
that there exists a continuous phase transition between these
two phases, associated with the Chern-Simons-Higgs tran-
sition SUð3Þ1 × SUð3Þ1 → SUð3Þ2. The generalization to
ðnn0Þ states gives SUðnÞ1 × SUðnÞ1 → SUðnÞ2 CS-Higgs
transitions, all of which match results obtained from sym-
metrizing the thin torus patterns. The case n ¼ 2 is related to
[40]; it is closely related to, but distinct from, the theory of
[31,41], since the edge theory of the non-Abelian state in this
case is Uð4Þ1=SUð2Þ2 ≠ SUð2Þ2.
The parton construction suggests wave functions that

capture the universal features of this state. In a continuum
system, a natural ansatz is PLLLðΦν¼2Þ3, where Φν¼2 is a
wave function where the two lowest symmetric Landau
levels are filled, and PLLL is the projection onto the lowest
Landau level. On a lattice, one can consider ΦC¼2ðfrigÞ3
[42], where ΦC¼2ðfrigÞ is a wave function for a band
insulator with Chern number 2.
Global phase diagram.—The above field theoretic under-

standing helps us understand the relation of this non-Abelian
state to the Z4 Read-Rezayi (RR) state, which can also
continuously transition to the (330) state [16,43]. As was
shown in [17,44], the Z4 RR state can be understood in terms
of ½SUð3Þ1 × SUð3Þ1�⋊Z2 CS gauge theory. Here, the
meaning of the ⋊Z2 is that the symmetry of interchanging
the two SUð3Þ gauge fields is itself promoted to a local
gauge symmetry. The transition from the Z4 RR state to the
(330) state can be understood as a Z2 gauge symmetry
breaking transition: ½SUð3Þ1 × SUð3Þ1�⋊Z2 → SUð3Þ1×
SUð3Þ1. Combining this with the result above, we see that
there are four closely related phases that are separated by
continuous phase transitions (see Fig. 1).

TABLE I. The anyon content of the non-Abelian state obtained
from the (330) state with strong interlayer tunneling. Plus (minus)
sign denotes the two possibilities consistent with results obtained
from the thin torus limit, and correspond to the chirality of the
non-Abelian sector, where the full edge theory has central charge
c ¼ 2� 4=5. The CS-Higgs theory fixes the c ¼ 14=5 case. F is
the golden ratio, ð1þ ffiffiffi

5
p Þ=2.

Label
Charge
(mod e)

Topological
Spin

Quantum
Dim.

1 V0 0 0 1
2 V1 2e=3 1=3 1
3 V2 e=3 1=3 1
4 τ 0 �2=5 F
5 V1τ 2e=3 1=3� 2=5 F
6 V2τ e=3 1=3� 2=5 F
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Returning to the thin torus Hamiltonian (2), in the limit
where t⊥ is the largest energy scale, the electrons only
occupy the symmetric orbitals on each site, with two
electrons per unit cell. In this limit the ground state will
be threefold degenerate. Since this degeneracy can be
accounted for by center of mass translations Ty, the
resulting state is Abelian and corresponds to the particle-
hole conjugate of the 1=3 Laughlin state. A similar result is
obtained in the context of the (331) state [32].
Conclusion.—At the transition between the (330) state

and the non-Abelian states, the charge gap remains open
while the neutral gap closes. Past experiments [45–47],
which have probed the ν ¼ 2=3 phase diagram in bilayers
through resistivity measurements, were directly sensitive
only to the charge gap and thus have not yet definitively
ruled out these exotic non-Abelian states and transitions.
In the Supplemental Material [28], we discuss a different

“coupled wire” approach [9,10,48] and show the remarkable
agreement with the results presented above, we provide
additional details and generalizations of our analyses, and we
discuss the duality between the ðnnlÞ bilayer state with
interlayer pairing and the ðn; n;−lÞ state with interlayer
tunneling.
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