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We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of
an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1

transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly
charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most
direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of
atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can
have projected fractional accuracies below the 10−20–10−21 level for all common systematic effects, such as
blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

DOI: 10.1103/PhysRevLett.113.233003 PACS numbers: 06.30.Ft, 32.10.−f

Development of optical atomic clocks has seen truly
impressive advances over the past decade. Two approaches
have competed and complemented each other: singly
charged trapped ions [1] and an ensemble of neutral atoms
trapped in designer “magic” optical lattices [2]. These
experiments rapidly expanded the frontiers of accuracy and
stability. Presently ion clocks (23Alþ [1], 171Ybþ [3], and
88Srþ [4]) have reached the 10−17 fractional stability while
lattice clocks have demonstrated the stability at the 10−18

level (Yb [5], Sr [6]). The projected accuracy of these
clocks is at the level of 10−17–10−18. Such accuracies are
anticipated to have implications both for practical (e.g.,
relativistic geodesy) and fundamental applications (testing
time and space variation of fundamental constants [7] and
search for topological dark matter [8]).
For any atomic clockwork one has to carefully minimize

environmental perturbations of a quantum oscillator. For
example, clock frequencies can be affected by the thermal
bath of blackbody radiation (BBR), electric-quadrupole
couplings to the trapping and residual electromagnetic
fields, ambient magnetic fields, and through various
Stark shifts. Novel classes of clocks: nuclear clocks [9]
and clocks employing highly charged ions [10], are
naturally impervious to such perturbations. Nuclear clocks
utilizing the isomeric transition in 229Th nucleus are
estimated [11] to have the fractional accuracy at the
10−19 level. Here the improvement comes due to the small
size of a nucleus and thereby reduced couplings to
environmental perturbation. However, the low-energy
229Th nuclear transition has not been observed yet and
its frequency is estimated with a large uncertainty (∼eV).
As an alternative to reaching accuracies similar to that of

the nuclear clock, Ref. [10] proposed using optical tran-
sitions in highly charged ions (HCI). These authors
considered electric-quadrupole (E2) transitions between
terms arising from the 4f12 electronic configuration. As for
the nucleus, the key advantage of the HCIs is the reduced
size of the quantum oscillator. Indeed, compared to a
neutral atom, the HCI electronic cloud is shrunk by the
factor of Zi (Zi is the residual charge of the ion, related to
the nuclear charge Z and the total number of electronsNe as
Zi ¼ Z − Ne.) Moreover, gross energy intervals nominally
grow as Z2

i with increasing Zi. This leads to substantial
suppression of ac-Stark and BBR shifts as 1=Z4

i . The
quadrupolar moments of electronic clouds scale as 1=Z2

i
reducing quadrupolar shifts. An additional advantage of the
4f12 manifold stems from the possibility [10] of choosing
clock states that in addition to the mentioned 1=Z2

i overall
suppression minimize differential quadrupolar shift (i.e.,
accidental “arithmetic” suppression). Other possible HCI
clock transitions were recently proposed in [12].
In this Letter we propose an alternative approach to the

new generation of optical clocks based on highly charged
ions. In contrast to the HCI proposals [10,12] we employ
the following strategy: we focus on the magnetic-dipole
(M1) optical clock transitions between states belonging
either to the same fine- or hyperfine-structure manifolds
attached to the ground electronic state. We argue that this
choice substantially simplifies clock level structure remov-
ing degeneracies and enabling simpler clock initialization
and readout. Also, substantial quadrupolar shifts can be
either strongly suppressed or fully eliminated. We argue
that our proposed HCI clock based on M1 optical tran-
sitions can be considered as a suitable candidate for the next
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generation of frequency standards with fractional uncer-
tainty at the 10−19 level.
For example, hydrogenlike (Ne ¼ 1) and alkalilike

(Ne ¼ 3; 11; 29;…) HCIs have a single valence electron
outside a closed-shell core. Their ground electronic term is
2S1=2 with the total angular momentum J ¼ 1=2.
Interaction of the nuclear magnetic moment with the
electron spin splits the ground state into two hyperfine
levels characterized by the angular momentum F ¼
I � 1=2, where I ≠ 0 is the nuclear spin [see Fig. 1(a)].
M1 transition between these two levels for HCI with
Zi > 60 can indeed lie in the optical spectral region (see
Table I) and thereby can be used as a basis of an optical
clock. It is worth emphasizing that while in neutral atoms,
hyperfine transitions are in the microwave domain, it is the
scaling with Zi that pushes these frequencies into optical
spectrum for the HCIs.
The number of candidate HCIs is vastly expanded when

we further focus on M1 transitions connecting levels of
fine-structure manifolds of the ground electronic state.
Fine structure emerges due to relativistic interactions that
are orders of magnitude more sizable than couplings to
nuclear spins. Thereby, the fine-structure intervals are much
larger than the hyperfine splittings and optical transition

frequencies are attained for smaller values of residual
charge Zi > 5. Some of possibilities are displayed in
Figs. 1(b) and 1(c), where we consider monovalent and
divalent ions. A particular choice of nuclear spins and
hyperfine states forming clock transitions fully eliminates
quadrupolar shifts discussed later.
Our analysis demonstrates that all the common system-

atic effects for HCI M1 clock transitions can be substan-
tially suppressed below the 10−20 level of fractional
accuracy. As an illustration we start by evaluating system-
atic clock shifts for the simplest example of hydrogenlike
ions with the nuclear spin I ¼ 1=2. The hyperfine structure
of the ground state consists of two levels F ¼ 1 and F ¼ 0
[see Fig. 1(a)]. The F ¼ 0 level lacks Zeeman components
eliminating the complexities of state preparation as other-
wise required for degenerate levels (see, e.g., [1]).
Quadrupole shift in inhomogenous electric fields.—In

ion clocks rf field trapping is essential for eliminating
Doppler broadening. The trapping fields are necessarily
inhomogeneous. The gradients of the trapping and residual
electric fields couple to the quadrupole moments (Q
moments) of clock states leading to undesirable shifts of
clock frequencies. Our choice of the J ¼ 1=2 clock states
warrants vanishing contribution of the electrons to the Q
moments due to the angular selection rules (quadrupole
operator is a rank 2 irreducible tensor). Similarly for the
I ¼ 1=2 nuclei, the nuclear Q moment vanishes for the
same reasons. Even for the I > 1=2 nuclei the quadrupole
coupling is exceptionally small as the nuclear Q moments
(proportional to size squared) are many orders of magni-
tude (∼1010) smaller than the electronic Q moments.
Zeeman shifts in magnetic field.—Application of the

magnetic field is required to lift the degeneracy of the F¼ 1
clock states. However, the B field shifts the clock transition.
The transition between theMF ¼ 0 clock states in Fig. 1(a)

is clearly unaffected by the linear Zeeman shifts, Δð1Þ
Z ¼ 0,

and we need to evaluate the second-order shift. Its value
relative to the clock frequency ωclock reads

Δð2Þ
Z

ωclock
¼ 2μ2BjHj2

ℏ2ω2
clock

; ð1Þ

(a)

(b)

(c)

FIG. 1 (color online). Illustrative examples of magnetic-dipole
clock transitions in monovalent [panels (a) and (b)] and divalent
(c) highly charged ions. The ordering of the hyperfine levels and
values of hyperfine intervals depends on the signs and relative
sizes of hyperfine structure constants. A particular choice of
nuclear spins in panels (b) and (c) and hyperfine states forming
clock transitions eliminates quadrupolar shifts.

TABLE I. Hyperfine transitions in hydrogenlike highly charged
ions (Ne ¼ 1) with wavelengths λclock < 3 μm. Here we list
stable isotopes with nuclear spin I ¼ 1=2.

Isotope Z Ne Zi λclock (μm) γsp=2π (Hz)
171Yb 70 1 69 2.16 0.43
195Pt 78 1 77 1.08 3.4
199Hg 80 1 79 1.15 2.8
203Tl 81 1 80 0.338 111.2
205Tl 81 1 80 0.335 114.2
207Pb 82 1 81 0.886 6.2
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where μB is the Bohr magneton and H is the B-field value.
For order-of-magnitude estimates we fix the clock fre-
quency at ωclock=2π ¼ 2 × 1014 Hz (λclock ≈ 1.5 μm.) For a
B field μBjHj=ð2πℏÞ ∼ 104 Hz the relative clock shift (1)
evaluates to 5 × 10−21, and even 10% uncertainties in the
field value translate into fractional clock inaccuracies
below 10−21.
Blackbody radiation shift.—Modern atomic clocks are

susceptible to thermal electromagnetic fields fluctuations.
These fluctuations couple to electric and magnetic
moments and lead to shifts of clock levels. Usually the
dominant contribution comes from the E1 couplings and
then the BBR shift ΔðE1Þ

BBR is proportional to the differential
electric dipole polarizability and T4, T being ambient
temperature [13]. Since the HCI polarizability is reduced
as 1=Z4

i , the BBR shift is similarly suppressed. Moreover,
the differential polarizability for a hyperfine transition
is reduced further by the factor of ωclock=ωdip, where
ωdip ∝ Z2

i is the frequency of the E1-allowed transition
to the closest level. This leads to the scaling law
ΔðE1Þ

BBR=ωclock ∝ 1=Z6
i , resulting in a negligible shift below

10−21 for Zi > 10 even at the room temperature. While the
E1 contribution usually overwhelms the BBR shift, for the
M1 clock transitions the dominant contribution comes from
the thermal B-field fluctuations that couple toM1 transition
moments. For a hyperfine transition of Fig. 1(a) this
M1-BBR shift can be computed as [14]

ΔðM1Þ
BBR

ωclock
¼ 16μ2B

3πℏc3

Z
∞

0

ω3dω

ðω2
clock − ω2Þðeℏω=kBT − 1Þ : ð2Þ

For example, for ωclock=2π ¼ 2 × 1014 Hz at T ¼ 300 K
the resulting relative shift is 5 × 10−20. The fractional clock
uncertainty is below 10−20 provided the temperature is
stabilized at the 300� 15 K level.
ac-Stark shift induced by clock laser.—The clock tran-

sition has to be ultimately probed by a stable laser that
would lock onto the transition. The probing itself leads to
clock shifts due to the ac Stark effect. This effect is
proportional to the E1 polarizability discussed in the
BBR shift context and thereby strongly suppressed
as 1=Z6

i .
The presented discussion of the optical hyperfine HCI

clocks clearly demonstrates that such clock transitions are
exceptionally insensitive to environmental perturbations.
As discussed, all common systematic shifts are well below
the 10−20 fractional accuracy level. Moreover, reaching this
level of accuracy does not require precision control of
ambient conditions. In addition, let us consider the rela-
tively large natural width of theM1 transitions that imposes
some limitations on the choice of candidate ions. For
example, for the hyperfine transition of Fig. 1(a) the natural
linewidth (in units of Hz) is given by

γsp
2π

¼ 4μ2Bω
3
clock

6πℏc3
: ð3Þ

Although this quantity may exceed 10 Hz for ωclock in the
visible spectrum, such values of linewidths are hardly a
practical limitation in current optical clock experiments.
Indeed, the experiments [1,3–5] used resonances that are
probe laser intensity broadened to 1–10 Hz anyway, while
the natural linewidths of the clock transitions are several
orders of magnitude smaller. In other words, having ultra-
narrow clock transitions is not essential—in fact, probing
ultranarrow transitions requires ultrastable lasers with a
comparable spectral bandwidth. Because of this practical
limitation it is sufficient to focus on optical M1 transitions
with a natural linewidth of 0.1–10 Hz. Equation (3) maps
this range into λclock ¼ 2πc=ωclock in the region between
0.5 to 3 μm. In particular, for ωclock=2π ¼ 2 × 1014 Hz
(λclock ¼ 1.5 μm) one obtains γsp ≈ 1.3 Hz. Longer wave-
lengths, while leading to a desirable reduction of γsp, also
have a negative impact—they increase fractional inaccur-
acies and instabilities as 1=ωclock.
In Table I we list hydrogenlike HCIs that have stable

isotopes with nuclear spin 1=2 and have a hyperfine
transition wavelength λclock < 3 μm. These relativistic
estimates were carried out using expressions from
Ref. [15] (see also experimental results [16,17]). Six heavy
isotopes satisfy all these conditions: 207Pb, 205Tl, 203Tl,
199Hg, 195Pt, and 171Yb. We find that transitions in Li-like
ions of the same isotopes have wavelengths longer than
3 μm. If, however, we consider I > 1=2 isotopes, the list of
candidate HCIs is substantially expanded at the expense of
increased degeneracies. The possibility of using the H-like
HCIs as qubits was briefly discussed in [18]. Notice that
usually employed hyperfine clock transitions lie in the
microwave spectral region. The using the H-like HCIs (see
also [19]) moves such transitions to the optical domain. As
the hyperfine transition frequencies depend on the fine-
structure constant, electron-to-proton mass ratio, and
nuclear magnetic moment, this proposal expands the range
of experimental schemes for probing space and time
variations of fundamental constants.
Having discussed the hyperfine clock transitions, now

we turn to the fine-structure manifolds. Below we focus on
two illustrative examples [see Figs. 1(b) and 1(c)]. All the
presented arguments for the hyperfine transitions remain
valid for the M1 fine-structure clock transitions, with some
minor modifications related to the quadrupolar shifts.
HCIs with a single p-valence electron, Fig. 1(b).—

Consider ions with the total number of electrons
Ne ¼ 5; 13; 31; 49, and 63 ground state of which splits into
the 2P1=2 and 2P3=2 fine-structure components. While the
electronic Q moment of the 2P1=2 state vanishes, the 2P3=2
state does have nonzero Q moment. Nevertheless, the quad-
rupolar shift canbe either eliminated or strongly suppressedby
choosing clock transitions between hyperfine components for
isotopes with I ¼ 1, 3=2, and 2. For example, for the I ¼ 1
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isotopes we may pick the j2P1=2; F ¼ 1=2i → j2P3=2;
F ¼ 1=2i transition where the Q moments simply vanish
due to the angular selection rules. For the I ¼ 2 isotopes we
may choose the transition j2P1=2; F ¼ 3=2i → j2P3=2;
F ¼ 1=2i. For the I ¼ 3=2 isotopes the proper choice would
be the j2P1=2; F ¼ 1i → j2P3=2; F ¼ 0i closed transition [see
Fig. 1(b)], where theQmoment of the state j2P3=2; F ¼ 0i is
zero and the Q moment of the state j2P1=2; F ¼ 1i is
very small. Further, using the jF ¼ 1;MF ¼ 0i sublevel
eliminates the linear Zeeman shift. Examples of optical
transition for the stable I ¼ 3=2 isotopes are compiled in
the Table II, while the stable I ¼ 1 and I ¼ 2 isotopes do not
exist (except for 2H, 6Li, and 14N, which are not suitable
for our goals).
HCIs with two p valence-shell electrons, Fig. 1(c).—The

ðnpÞ2 3P ground state fine-structure manifold of such ions
(Ne ¼ 6; 14; 32; 50; 64) have the 3P0 lowest-energy state
connected to the first excited 3P1 state via anM1 transition.
By choosing isotopes with I ¼ 1=2; 1; 3=2 one may also
either eliminate or substantially suppress the quadrupolar
shift. Indeed, for the I ¼ 1=2 isotopes the proper choice
of the clock transition would be j3P0; F ¼ 1=2i → j3P1;
F ¼ 1=2i [see Fig. 1(c)] with identically vanishing quad-
rupolar shift. For the I ¼ 1 isotopes one should use the
j3P0; F ¼ 1i → j3P1; F ¼ 0i transition, and for the I ¼
3=2 isotopes–the j3P0; F ¼ 3=2i → j3P1; F ¼ 1=2i transi-
tion. Compared to the single p-electron case of Fig. 1(b), an
added benefit of such HCIs is the simple single-component
structure of the ground state, which simplifies the initial
state preparation. Suitable HCIs for I ¼ 1=2 and 3=2 stable
isotopes are listed in Tables III and IV, respectively. The
linear Zeeman shift can be eliminated by averaging over
two clock transitions with opposite magnetic quantum
numbers MF. In particular, in the I ¼ 1=2 case we can
use a set of two transitions j3P0; F ¼ 1=2;MF ¼ �1=2i →
j3P1; F ¼ 1=2;MF ¼ �1=2i probed with linearly polar-
ized laser.
It is worth noting that only the clock transitions are in the

optical spectral region and in HCIs all the E1-allowed

transitions are shifted away into the ultraviolet or x-ray
regions, thus making traditional laser cooling difficult. An
alternative is to use sympathetic cooling with cotrapped
low-charge ions which would be laser cooled on their
E1-allowed transitions. For example, Ref. [22] experimen-
tally demonstrated sympathetic cooling of Xe44þ with Beþ
ions. In terms of the charge-to-mass ratio Zi=Mi, Mi being
the HCI mass choosing HCIs with fine-structure clock
transitions may be preferable over hyperfine clock tran-
sitions as the latter require a higher degree of ionization.
One could also use the cotrapped ion for quantum-logic
spectroscopy [23] for registering clock transitions in HCIs.
If the natural linewidth is larger than 100 Hz, one could
employ the continuous wave spectroscopy by detecting
spontaneously emitted photons. In that case one could
simultaneously continue the process of laser cooling of
cotrapped low-charge ion as the ac-Stark shifts of the clock
transition are negligible. The time dilation effect [24] of
special relativity for the HCI clocks was discussed in [10].
As an additional advantage of usingM1 transition we point
out the applicability of direct frequency comb spectroscopy
[25], as for these transitions the required intensity of the
probe field is low (≪ μW=cm2 for Rabi frequencies at the
level of 100 Hz and below).

TABLE II. Fine-structure 2P1=2 → 2P3=2 M1 clock transitions
in the optical range 0.3–4 μm for I ¼ 3=2 stable isotopes
(wavelength data from [20]).

Isotope Z Ne Zi
2P1=2 → 2P3=2 (μm) γsp=2π (Hz)

33S 16 5 11 0.761 3.25
35;37Cl 17 5 12 0.574 7.57
39;41K 19 5 14 0.3446 35.0
53Cr 24 13 11 0.8156 2.64
61Ni 28 13 15 0.3602 30.6
63;65Cu 29 13 16 0.3008 52.6
79;81Br 35 31 4 1.642 0.32
87Rb 37 31 6 0.9554 1.64
131Xe 54 49 5 0.6411 5.43
135;137Ba 56 49 7 0.4238 18.8

TABLE III. Fine-structure 3P0 → 3P1 M1 clock transitions in
the optical range 0.3–4 μm for I ¼ 1=2 stable isotopes ( ðaÞ data
from [20], ðbÞ data from [21]).

Isotope Z Ne Zi
3P0 → 3P1 (μm) γsp=2π (Hz)

29Si 14 6 8 3.929(a) 0.05
31P 15 6 9 2.709(a) 0.14
57Fe 26 14 12 1.075(a) 2.3
89Y 39 32 7 1.120(b) 2.04
103Rh 45 32 13 0.321(b) 86.5
123;125Te 52 50 2 2.105(a) 0.31
129Xe 54 50 4 1.076(a) 2.3

TABLE IV. Fine-structure 3P0 → 3P1 M1 clock transitions in
the optical range 0.3–4 μm for I ¼ 3=2 stable isotopes (wave-
length data from [20]).

Isotope Z Ne Zi
3P0 → 3P1 (μm) γsp=2π (Hz)

33S 16 6 10 1.9201 0.4
35;37Cl 17 6 11 1.381 1.1
39;41K 19 6 13 0.755 57 6.64
53Cr 24 14 10 1.806 0.49
61Ni 28 14 14 0.670 35 9.5
63;65Cu 29 14 15 0.5377 18.4
69;71Ga 31 14 17 0.355 99 63.4
79;81Br 35 32 3 3.8138 0.05
87Rb 37 32 5 1.9455 0.39
131Xe 54 50 4 1.0762 2.3
135;137Ba 56 50 6 0.644 88 10.7
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To summarize, compared to the proposals of using high-
multipole transitions for the HCI clockwork [10,12], we
argue that the most direct advantage of our proposal comes
from the low degeneracy of clock levels and the simplicity
of atomic structure in combination with negligible quad-
rupolar shift. This simplicity is anticipated to translate into
easier experimental clock initialization, probing, and res-
onance detection. In addition to such “Occam’s razor”
appeal of the M1 HCI clockwork, there is a substantial
natural suppression or elimination of quadrupole shifts for
clock transitions of Fig. 1. This fact can be a key advantage
for the next generation of ion clock, because it again
simplifies experimental realization and does not need to
rely on applications of special averaging techniques
[26,27], which have some limitations (for example, due
to the nonlinear quadrupolar corrections) to assert in
practice the uncertainty at the level 10−19–10−20 in the
case of nonzero electronic quadrupolar moment.

We thank V.M. Shabaev for useful discussions.
V. I. Yu. and A. V. T. were supported by the RFBR
(Grants No. 14-02-00712, No. 14-02-00939, No. 14-02-
00806), by the Russian Academy of Sciences and
Presidium of the Siberian Branch of the Russian
Academy of Sciences, and RF Ministry of Education
and Science. A. D. was supported by the U.S. National
Science Foundation.

*viyudin@mail.ru
[1] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland,

and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
[2] H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D.

Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003).
[3] N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers,

C. Tamm, and E. Peik, Phys. Rev. Lett. 108, 090801
(2012).

[4] A. A. Madej, P. Dube, Z. Zhou, J. E. Bernard, and M.
Gertsvolf, Phys. Rev. Lett. 109, 203002 (2012).

[5] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo,
N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates,
and A. D. Ludlow, Science 341, 1215 (2013).

[6] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L.
Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley,
and J. Ye, Nature (London) 506, 71 (2014).

[7] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A.
Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M.
Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R.
Newbury, W.M. Itano, D. J. Wineland, and J. C. Bergquist,
Science 319, 1808 (2008).

[8] A. Derevianko and M. Pospelov, arXiv:1311.1244.
[9] E. Peik and Chr. Tamm, Europhys. Lett. 61, 181 (2003).

[10] A. Derevianko, V. A. Dzuba, and V. V. Flambaum, Phys.
Rev. Lett. 109, 180801 (2012).

[11] C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba,
V. V. Flambaum, and A. Derevianko, Phys. Rev. Lett. 108,
120802 (2012).

[12] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I.
Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev.
Lett. 113, 030801 (2014).

[13] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502
(2006).

[14] W.M. Itano, L. L. Lewis, and D. J. Wineland, Phys. Rev. A
25, 1233(R) (1982).

[15] V. M. Shabaev, J. Phys. B 27, 5825 (1994).
[16] P. Seelig et al., Phys. Rev. Lett. 81, 4824 (1998).
[17] P. Beiersdorfer et al., Phys. Rev. A 64, 032506 (2001).
[18] D. J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B. E.

King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol.
103, 259 (1998).

[19] S. Schiller, Phys. Rev. Lett. 98, 180801 (2007).
[20] Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD

Team (2008), http://physics.nist.gov/cgi‑bin/ASD/.
[21] E. Biemont, A. El Himdy, and H. P. Garnir, J. Quant.

Spectrosc. Radiat. Transfer 43, 437 (1990).
[22] L. Gruberx, J. P. Holder, and D. Schneider, Phys. Scr. T71,

60 (2005).
[23] P. O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J. C.

Bergquist, and D. J. Wineland, Science 309, 749 (2005).
[24] C. W. Chou, D. B. Hume, T. Rosenband, and D. J.

Wineland, Science 329, 1630 (2010).
[25] T. M. Fortier, Y. Le Coq, J. Stalnaker, D. Ortega, S.

Diddams, C. Oates, and L. Hollberg, Phys. Rev. Lett. 97,
163905 (2006).

[26] W.M. Itano, J. Res. Natl. Inst. Stand. Technol. 105, 829
(2000).

[27] V. A. Dzuba, A. Derevianko, and V. V Flambaum, Phys.
Rev. A 86, 054501 (2012).

PRL 113, 233003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

233003-5

http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://dx.doi.org/10.1103/PhysRevLett.91.173005
http://dx.doi.org/10.1103/PhysRevLett.108.090801
http://dx.doi.org/10.1103/PhysRevLett.108.090801
http://dx.doi.org/10.1103/PhysRevLett.109.203002
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1126/science.1154622
http://arXiv.org/abs/1311.1244
http://dx.doi.org/10.1209/epl/i2003-00210-x
http://dx.doi.org/10.1103/PhysRevLett.109.180801
http://dx.doi.org/10.1103/PhysRevLett.109.180801
http://dx.doi.org/10.1103/PhysRevLett.108.120802
http://dx.doi.org/10.1103/PhysRevLett.108.120802
http://dx.doi.org/10.1103/PhysRevLett.113.030801
http://dx.doi.org/10.1103/PhysRevLett.113.030801
http://dx.doi.org/10.1103/PhysRevA.74.020502
http://dx.doi.org/10.1103/PhysRevA.74.020502
http://dx.doi.org/10.1103/PhysRevA.25.1233
http://dx.doi.org/10.1103/PhysRevA.25.1233
http://dx.doi.org/10.1088/0953-4075/27/24/006
http://dx.doi.org/10.1103/PhysRevLett.81.4824
http://dx.doi.org/10.1103/PhysRevA.64.032506
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.1103/PhysRevLett.98.180801
http://physics.nist.gov/cgi-bin/ASD/
http://physics.nist.gov/cgi-bin/ASD/
http://physics.nist.gov/cgi-bin/ASD/
http://dx.doi.org/10.1016/0022-4073(90)90127-R
http://dx.doi.org/10.1016/0022-4073(90)90127-R
http://dx.doi.org/10.1088/0031-8949/71/1/010
http://dx.doi.org/10.1088/0031-8949/71/1/010
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1126/science.1192720
http://dx.doi.org/10.1103/PhysRevLett.97.163905
http://dx.doi.org/10.1103/PhysRevLett.97.163905
http://dx.doi.org/10.6028/jres.105.065
http://dx.doi.org/10.6028/jres.105.065
http://dx.doi.org/10.1103/PhysRevA.86.054501
http://dx.doi.org/10.1103/PhysRevA.86.054501

