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Logarithmic timelike Liouville quantum field theory has a generalizedPT invariance, where T is the time-
reversal operator and P stands for an S-duality reflection of the Liouville field ϕ. In Euclidean space, the
Lagrangian of such a theory L ¼ 1

2
ð∇ϕÞ2 − igϕ expðiaϕÞ is analyzed using the techniques ofPT -symmetric

quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory
labeled by the integer n. In one-dimensional space (quantummechanics), the energy spectrum is calculated in
the semiclassical limit and the mth energy level in the nth sector is given by Em;n ∼ ðmþ 1=2Þ2a2=ð16n2Þ.
DOI: 10.1103/PhysRevLett.113.231605 PACS numbers: 03.70.+k, 03.65.-w, 11.30.Er

Two-dimensional conformal field theories have attracted
enormous attention in the physics community, in part
because of their role as the underlying world-sheet theory
of (first quantized) strings and in part because they describe
one-space-dimensional systems, such as spin chains, which
are of great interest in condensed matter physics. At the
boundary between two-dimensional conformal field theories
and general (renormalizable) two-dimensional field theories
lie the so-called Liouville field models, which also describe
the gravitational sector of strings away from their conformal
points in theory space [1–6]. Upon analytic continuation in
the Liouville mode, the so-called timelike Liouville theories
are obtained. Such models may be used either as regulators
[7] that aid in understanding the nonperturbative structure
of correlation functions of Liouville models [8] or as toy
models for quantum gravity effects in inflation [9] and in the
dark energy and acceleration of the Universe. Quantum-
mechanical models based on timelike Liouville field theories
[7,10] have been studied in the semiclassical limit, where
the central charge (counting degrees of freedom) tends to
infinity. Such works shed light on the structure of correlation
functions of the full field theories.
Motivated by studies of timelike logarithmic Liouville

quantum field theory, we examine here the interaction
−igϕ expðiaϕÞ in field theory and its quantum-mechanical
analog −igx expðiaxÞ. This remarkable interaction gives
rise to a countably infinite number of inequivalent quantum
theories.
The interaction −igϕ expðiaϕÞ has its origin in conformal

field theory (CFT) of the Liouville type, whose interaction
has the form eαϕ [1–6]. This exponential arises in string
theory and in two-dimensional gravity, which are defined on
two-dimensional manifolds. Using general coordinate invari-
ance, one can show that the metric tensor gμν for these
theories can be reduced locally to gμν ¼ ημνeαϕ, where ημν is

the Minkowski metric. String theory and two-dimensional
gravity are conformally invariant at the classical level, but
quantum effects can produce an anomaly that destroys
conformal invariance. Conformal symmetry is restored if
the field ϕ is governed by the Liouville action

S ¼
Z

∞

−∞
dτ

Z
2π

0

dσ
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2
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2
ð∂σϕÞ2 − geαϕ

�
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Recoil effects for zero-dimensional D-branes scattering
off closed strings are described by the interaction ϕeαϕ

in addition to the usual Liouville interaction eαϕ [11]. Such
pairs of operators define a logarithmic CFT [12].
Logarithmic CFTs also arise in descriptions of quenched
disordered condensed matter systems [13,14]. Supercritical
strings [15] and the condensation of tachyons [7,16] are
studied in the context of timelike Liouville theories, whose
interaction term has α replaced by ia. Thus, combining the
ideas of Liouville and logarithmic CFT, we are led to
consider the d-dimensional Euclidean Lagrangian

L ¼ 1

2
ð∇ϕÞ2 − igϕeiaϕ − heiaϕ; ð1Þ

where ϕ is a scalar field and a, g, and h are treated as
positive-real parameters.
The Lagrangian (1) is not Hermitian, and one cannot

make such a theory Hermitian by adding its Hermitian
conjugate because this would destroy the conformality
property of the theory. Nevertheless, the techniques of PT
quantum theory [17] can be used to study this field theory.
The Lagrangian is not obviously PT invariant because in
Liouville theory the field ϕ is assumed to transform as a
scalar, so it does not change sign under space reflection.
[If ϕ were a pseudoscalar field, the Lagrangian would be
PT invariant because under parity reflection P, ϕ would
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change sign Pϕðx; tÞP ¼ −ϕð−x; tÞ, and under time rever-
sal T , i changes sign T iT ¼ −i.] However, we let P
represent an S-duality reflection [18]

Pϕðx; tÞP ¼ −ϕðx; tÞ; ð2Þ
and with this definition of P, L is manifestly PT
symmetric. A non-Hermitian PT -invariant theory can have
a positive-real spectrum and unitary time evolution [17].
The interaction terms of Eq. (1) have a periodic compo-

nent, and thus L bears a resemblance to some previously
studied PT -symmetric theories, including the complex
Toda lattice [19], complex diffraction gratings [20], and
complex crystal lattices [21]. Complex PT -symmetric
periodic potentials exhibit a real-energy band structure.
There have also been studies of the complex sine-Gordon
equation [22], complex dynamical systems [23], and
PT -symmetric exponential potentials [24]. However, the
factor of ϕ multiplying g in Eq. (1), which is characteristic
of logarithmic CFT, leads to surprising new effects.
Specifically, the partition function as a path integral over L

Zn ¼
Z

Dϕ exp

�Z
ddxL

�
ð3Þ

has infinitely many distinct functional integration paths
labeled by n ¼ 1; 2; 3…, each defining a valid but unitarily
inequivalent quantum theory. This multiplicity of theories
is not due to monodromy (there is no winding number
because the integrand is entire) nor is it a topological effect
(like θ vacua). The quantum-mechanical version of this
timelike logarithmic CFT has discrete energy levels rather
than energy bands. The mth energy level in the nth theory
grows like m2 as m → ∞, but for fixed m the energies
decay like n−2 as n → ∞.
To find the integration paths on which the integral (3)

converges, we must locate in field space the pairs of Stokes
wedges inside which the integrand vanishes exponentially.
To begin, we simplify this integral by shifting ϕ by a
constant to eliminate the parameter h in L. Next, we neglect
the effect of the kinetic term ð∇ϕÞ2 because it does not
affect the convergence. We also ignore the spatial integral
in the exponent and study the convergence at each lattice
point separately; that is, we perform an ultralocal analysis
[25] and examine the convergence of

I ¼
Z

dϕ expðigϕeiaϕÞ: ð4Þ

We illustrate how to locate Stokes wedges in the
complex-ϕ plane by using monomial potentials ϕk. For
such potentials the angular opening of the Stokes wedges
has a simple k dependence. For k ¼ 4 the integralR
dϕ expð−ϕ4Þ converges in a pair of Stokes wedges of

angular opening 45° centered about the positive-ϕ and
negative-ϕ axes (Fig. 1, left panel). The integration contour
must terminate inside these Stokes wedges. For a
PT -symmetric upside-down −ϕ4 potential, the associated

integral
R
dϕ expðϕ4Þ converges in a pair of Stokes wedges

of angular opening 45° centered about argϕ ¼ −45° and
argϕ ¼ −135° (Fig. 1, right panel).
The integral I in Eq. (4) is unusual because it converges

in pairs of Stokes wedges of asymptotic angular opening
0°. There are infinitely many such Stokes wedges in the
complex-ϕ plane, all parallel to the negative-imaginary
axis. Each pair of wedges defines a distinct physical theory
having its own real-energy spectrum. Guralnik and
Pehlevan [26] first recognized that for functional integrals,
inequivalent classes of contours with different complex
boundary conditions are associated with nonunique sol-
utions to the Dyson-Schwinger equations. They found that
multiple solutions account for inequivalent θ vacua [26].
In Ref. [27] it was shown that if the pairs of Stokes wedges
possess left-right symmetry (PT symmetry) in complex
field space, the field theory is physically acceptable
because the masses (poles of the Green’s functions) are
real and the theory is unitary. However, Ref. [27] only
considered the case of a finite number of distinct physical
theories, one theory for each pair of wedges.
Here, we consider the unusual case of an infinite number

of inequivalent theories corresponding to pairs of infinitely
thin Stokes wedges. To find the paths of integration on which
I converges, we introduce polar coordinates ϕ ¼ Reiθ and
treat R as large. Then, Eq. (4) becomes

I ¼
Z

dϕ expðigRe−aR sin θeiθþiaR cos θÞ: ð5Þ

We need to find Stokes wedges, that is, the angles at which
the integrand vanishes exponentially fast as R → ∞. At the
center θ of a Stokes wedge, the exponent in Eq. (5) must
be real, and thus θ þ aR cos θ ∼ ðnþ 1=2Þπ as R → ∞ (n
integer). Also, the argument of the exponential must be
negative so that it vanishes as R → ∞. Thus, sinðθ þ
aR cos θÞ ∼ 1 as R → ∞, and we find that

θ þ aR cos θ ∼ ð�2nþ 1=2Þπ ðR → ∞Þ; ð6Þ
where n > 0. The maximum rate of decay occurs at the
center of the wedge, so θ must be close to −π=2. Hence,
we substitute θ ¼ −π=2þ ϵ into Eq. (6) and obtain ϵ ∼
ð2nþ 1Þπ=ðaRÞ ðR → ∞Þ. We find that the centers of the
Stokes wedges lie at

FIG. 1. Integration paths terminating in Stokes wedges (shaded
regions) for Hermitian ϕ4 (left panel) and PT -symmetric −ϕ4

(right panel) interactions.
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θn ∼ −
1

2
π � ð2nþ 1Þπ

aR
ðR → ∞Þ: ð7Þ

To summarize for the partition function Zn in Eq. (3), the nth
path of functional integration originates in the −nth Stokes
wedge, terminates in the nth Stokes wedge, and is asymp-
totically parallel to the negative-imaginary axis. The path is
PT (left-right) symmetric (see Fig. 2).
The PT -symmetric quantum-mechanical Hamiltonian

H corresponding to the field-theoretic Lagrangian (1) is

H ¼ p2 − igxeiax þ heiax; ð8Þ
where a, g, and h are assumed to be real and positive. As
we did for the the field-theoretic model, we shift x by a
constant to eliminate h and obtain the Hamiltonian

H ¼ p2 − igxeiax: ð9Þ
Both quantum-mechanical Hamiltonians (8) and (9)

possess a singular limit. If a → 0, H in Eq. (9) reduces
to H ¼ p2 − igx. This limit is singular because, as was
shown by Herbst, the spectrum of this Hamiltonian is null
[28]. To explain intuitively the absence of eigenvalues, we
solve Hamilton’s classical equations _x ¼ ∂H=∂p ¼ 2p,
_p ¼ −∂H=∂x ¼ ig. Combining these equations gives
ẍ ¼ 2ig, whose solutions are parabolas in the complex
plane: xðtÞ ¼ igt2 þ αtþ β. (α and β are constants.)
Parabolas are open curves (see Fig. 3), so it is not possible
to satisfy the Bohr-Sommerfeld (WKB) quantization con-
dition

H
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðxÞp ¼ ðmþ 1=2Þπ ðm ¼ 0; 1; 2…Þ,

which involves an integral over a closed path.
A singular limit ofH in Eq. (8) is g → 0, which gives the

HamiltonianH ¼ p2 þ heiax studied in Refs. [20,21]. This
Hamiltonian exhibits real-energy bands but has no discrete
energies. To explain intuitively the absence of discrete
eigenvalues, we plot the classical paths in the complex
plane (see Fig. 4). We see that these classical paths are 2π
periodic and thus are open curves.
In contrast, the classical paths forH in Eq. (9) are closed

(see Fig. 7). Thus, that Hamiltonian has discrete bound

states. To prepare for calculating the eigenvalues of the
bound states of H in Eq. (9), we must locate the classical
turning points, which are the roots of E ¼ −igxeiax. We
assume that E, g, and a are all positive and let x ¼ Aþ iB.
Thus, we must solve the transcendental equation

E ¼ −igðAþ iBÞeiaðAþiBÞ: ð10Þ
The imaginary part of Eq. (10) gives B in terms of A,
B ¼ A cotðaAÞ, and substituting this result into Eq. (10)
gives E sinðaAÞ=ðgAÞ ¼ e−aA cotðaAÞ. So, if we let ν ¼ aE=g
and α ¼ aA, we get the transcendental equation

να−1 sin α ¼ e−α cotα: ð11Þ
To solve this equation graphically, we plot the left side
of Eq. (11) as a solid curve and the right side as a dotted
curve. (The left and right sides are even functions of x.)
The intersections of these curves are solutions to Eq. (11).
Figure 5 shows that there are two sets of solutions.

The first is exactly x ¼ nπ, but we reject this solution
because it gives B ¼ ∞. The second set has intersection
points near αn ¼ ð2nþ 1=2Þπ − δ, where δ ≪ 1 as n → ∞.
Thus, for large n the turning points are located symmet-
rically about the imaginary-x axis at

Rex ¼ A ∼�ð2nþ 1=2Þπ=a;

Imx ¼ B ∼
1

a
log

�ð2nþ 1=2Þπg
aE

�
: ð12Þ

Table I verifies the accuracy of this asymptotic formula.

FIG. 2. Integration paths in complex-ϕ space for which the
integral (4) converges. The paths terminate in infinitely thin
Stokes wedges and define unitarily inequivalent theories.

FIG. 4 (color online). Classical paths for H ¼ 1
2
p2 þ eix at

E ¼ 1. The classical paths are 2π periodic and open.

FIG. 3 (color online). Complex classical paths for the potential
V ¼ −ix with E ¼ 1. The paths are parabolic and thus do not
close.
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Having found the turning points, we next examine the
complex classical paths for H in Eq. (9). In general, for
any given Hamiltonian, the classical energy determines a
continuous family of classical paths distinguished by the
initial value of x. See, for example, the classical paths
for the x2 oscillator in Fig. 6 (left panel) and for the x6

oscillator in Fig. 6 (right panel). Note that every family of
classical paths encloses one pair of turning points.
The classical paths for the Hamiltonian (9) are shown in

Fig. 7. The turning points are enclosed in pairs. Also shown
are the separatrix paths (see Table II) that divide the
families of closed classical trajectories.
Finally, we perform a leading-order WKB calculation of

eigenvalues of the Hamiltonian in Eq. (9). In general, when
a theory is quantized, each pair of classical turning points
(and its continuous family of closed complex classical
paths) corresponds to a different and unitarily inequivalent
quantum theory. For example, the central pair of turning
points in Fig. 6 (right panel) corresponds to the conven-
tional Hermitian x6 quantum oscillator, whereas the upper
and lower pairs correspond toPT -symmetric x6 oscillators.
Thus, since there are an infinite number of pairs of classical
turning points for the model in Fig. 7, we anticipate that
there will be an infinite number of classes of eigenvalues for
the time-independent Schrödinger equation forH in Eq. (9)

−ψ 00ðxÞ − igxeiaxψðxÞ ¼ EψðxÞ: ð13Þ

The complex-x WKB quantization condition is

Z
xn

x−n

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ igxeiax

p
¼ ðmþ 1=2Þπ; ð14Þ

where the turning points x�n ¼ ð1=aÞ½�2nπ þ
i logð2nπg=aEÞ� are given in Eq. (12). For large n,
Eq. (14) simplifies to

ðmþ 1=2Þa
2n

ffiffiffiffi
E

p ∼
Z

1

−1
dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iwe2inπw

p
∼ 2ðn → ∞Þ:

Thus, for large n and large m, the WKB approximation to
the mth energy in the nth eigenspectrum is

Em;n ∼ ðmþ 1=2Þ2a2n−2=16: ð15Þ

The mth eigenvalue in the nth spectrum grows like the
energies in a square well [30]. However, themth eigenvalue
in the nth spectrum behaves like the energy levels in the
Balmer series for the hydrogen atom and decays like n−2.
The parameter g does not appear in Eq. (15); it appears only
in higher-order WKB. The theories corresponding to
different values of n are all inequivalent—they are asso-
ciated with different pairs of Stokes wedges and have
different energy spectra. To conclude, PT analysis reveals

FIG. 5 (color online). Graphical solution to Eq. (11). The solid
curve is the left side of Eq. (11), and the dashed curve is the
right side.

TABLE I. Good agreement between the numerically precise
values of the turning points and the asymptotic approximation in
Eq. (12) when a ¼ 1, g ¼ 1, and E ¼ 1.

Turning point
number Exact Approximate

n ¼ 0 1.3372þ 0.3181i 1.5708þ 0.4516i
n ¼ 1 7.5886þ 2.0623i 7.8540þ 2.0610i
n ¼ 2 13.9492þ 2.6532i 14.1372þ 2.6488i
n ¼ 3 20.2725þ 3.0202i 20.4204þ 3.0165i
n ¼ 4 26.5805þ 3.2878i 26.7035þ 3.2848i

FIG. 6 (color online). Left panel: Four complex classical paths
for the p2 þ x2 oscillator with energy E ¼ 1. The family of paths
encloses the turning points (dots) at x ¼ �1 and fills the entire
complex plane. Right panel: Two examples of each of the three
families of classical paths for the p2 þ x6 oscillator for E ¼ 1.
Each family encloses one pair of turning points, and together the
three families fill the complex plane.

FIG. 7 (color online). Classical paths (solid curves) and
separatrices (dashed curves) for H in Eq. (9) for a ¼ 1, g ¼ 1,
and E ¼ 1. The central paths enclose the n ¼ �1 pair of turning
points (dots); the next family encloses the n ¼ �2 pair, and so on.

PRL 113, 231605 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

231605-4



the simple but astonishing structure that underlies timelike
Liouville logarithmic CFT.
In future work, we will investigate (i) whether it is

possible to tunnel between the inequivalent theories that we
have found, which in toy cosmological applications as in
Ref. [9] may correspond to an exit from the inflationary
phase, and (ii) whether it is possible to examine the
(nonperturbative) conformal nature of two-dimensional
logarithmic CFT by studying the WKB approximation to
the quantum-mechanical eigenfunctions in Eq. (13) [10].
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