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Quantum mass acquisition, in which a massless (quasi)particle becomes massive due to quantum
corrections, is predicted to occur in several subfields of physics. However, its experimental observation
remains elusive since the emergent energy gap is too small. We show that a spinor Bose-Einstein
condensate is an excellent candidate for the observation of such a peculiar phenomenon as the energy gap
turns out to be 2 orders of magnitude larger than the zero-point energy. This extraordinarily large energy
gap is a consequence of the dynamical instability. The propagation velocity of the resultant massive
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excitation mode is found to be decreased by the quantum corrections as opposed to phonons.
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Introduction.—Since the first realizations of the super-
fluid-Mott insulator phase transition in systems of bosons
[1] and fermions [2], systems of ultracold atoms have been
regarded as ideal quantum simulators of condensed-matter
physics. Recently, there have been proposals to use ultracold
atoms for the study of lattice gauge theories [3,4]. Moreover,
since ultracold atoms can be manipulated and measured with
unprecedented precision, they are especially suited to in-
vestigate purely quantum-mechanical effects, which are
very small and thus require high-resolution probes. Notice-
able examples are quantum anomaly and vacuum alignment
phenomena. The former is a weak violation of the original
symmetry in the classical counterpart of the theory due to
regularization, as proposed in two-dimensional Bose and
Fermi gases [5,6]. The latter indicates the lift of the
degeneracy in the ground-state manifold due to quantum
fluctuations, as in the nematic phase of spin-2 BECs [7,8].

In this Letter, we show that spinor Bose-Einstein con-
densates (BECs) offer an excellent playground for the study
of quantum mass acquisition. It occurs as a purely quantum-
mechanical effect in which a massless particle or quasipar-
ticle becomes massive as a consequence of higher-order
quantum corrections. This peculiar type of particles are
called quasi-Nambu-Goldstone (qNG) bosons, which are
gapless excitations that do not originate from spontaneous
symmetry breaking. The qNG bosons have been a vital
ingredient in high-energy physics [9-13]. They behave like
Goldstone bosons at the zeroth order but acquire energy gaps
due to higher-order corrections [14]. The gNG mode has also
been predicted to appear in superfluid *He [15], spin-1 color
superconductors [16], spinor BECs [17], and pyrochlore
magnets [18]. Despite its ubiquitous nature across different
subfields of physics, the experimental observation of quan-
tum mass acquisition has remained elusive because the
emergent energy gap is too small to be distinguished from
other secondary effects.
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It is generally held that zero-point fluctuations should
play a crucial role in determining the energy gap of the
gNG mode [17]. However, it turns out that in contrast to
other systems, in spinor BECs the zero-point energy does
not set the energy scale of the gap of the qNG mode
because the mean-field state, on which the zero-point
energy is calculated, turns out to be dynamically unstable
once quantum corrections beyond the Bogoliubov approxi-
mation are taken into account [19]. In fact, by using the
spinor Beliaev theory [19-22], we analytically derive the
emergent energy gap of the QNG mode in spin-2 BEC as a
function of the fundamental interaction parameters and
find that the energy gap is 2 orders of magnitude larger
than the zero-point energy; therefore, the ground state is
much more robust than previously imagined. This unex-
pectedly large energy gap gives us a great hope for the long-
sought qNG mode to be observed experimentally. We also
show that the propagation velocity of the NG mode is
decreased by fluctuations in the particle-number density as
opposed to phonons.

System.—The interaction energy of an ultracold dilute
gas of spin-2 atoms is given in the second quantization by
[23,24]

~ 1 o PO
V:z/dr[cozﬁzz o182 ey Al Ag:], (1)

where :: denotes the normal ordering of operators. Here,

A=) (r), B =32, 0] (0)(£);97,(x), and Ay =
(1/V/5)32;(=1)yr;(r)fp_;(r) are the particle-number
density, spin density, and spin-singlet pair amplitude
operators, respectively, where i;(r) is the field operator
of an atom in magnetic sublevel j (j =2,1,...,-2) at
position r, and (f),; denotes the ij component of the spin-2
matrix vector. The coefficients ¢, ¢y, and ¢, are related
to the s-wave scattering lengths ar (F =0,2,4) of the
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total-spin-F channel by co=4rh?(4a,+3a,)/(TM), ¢, =
4ﬂfl2(a4—a2)/(7M), and c2:4ﬂh2(7a0—10a2+3a4)/
(7M). For spin-2 8’Rb atoms, the magnitude of the spin-
independent interaction is given by c¢,/(4xh*/M) =
ap,4 = 100ap, where ag is the Bohr radius. According
to the spin-exchange dynamics measurement [25], the value
of ¢, is accurately determined to be ¢, /(4zxh*ag/M) =
0.99 + 0.06, whereas that of ¢, suffers a large error bar:
¢,/ (4rxh*ag/M) = —0.53 £ 0.58. As shown in Fig. 1, the
negative median of ¢, implies that the ground state of 8’Rb
BEC is likely to be uniaxial nematic (UN). A numerical
calculation of ¢, for 8’Rb also supports the high likelihood
of the ground state being the UN phase [26].

The three interactions in Eq. (1) with coupling constants
co» €1, and ¢, have SU(5), U(1) x SO(3), and U(1) x
SO(5) symmetries, respectively [27]; the symmetry of the
total Hamiltonian is therefore U(1) x SO(3) in the coupled
gauge-spin space. For the nematic phase, the number of
continuous symmetries that are spontaneously broken
is three, leading to three Nambu-Golstone excitations (one
phonon and two magnon modes). On the other hand, the
Bogoliubov spectrum shows a total of five gapless excita-
tions [28]. The two extra gapless modes that do not stem
from spontaneous symmetry breaking are the qNG modes.
The appearance of the two extra gapless excitations can be
understood by noting that the mean-field ground-state
manifold of the nematic phase has an SO(5) symmetry that

FIG. 1 (color online). Ground-state phase diagram of spin-2
BECs with quantum fluctuations. The strengths of interactions ¢
and ¢, are shown in units of 4zA%ag/M, where ag is the Bohr
radius. The inset shows the corresponding mean-field phase
diagram. The zero-point fluctuations lift the degeneracy in the
nematic phase, selecting the uniaxial-nematic (UN) [biaxial-
nematic (BN)] phase as the true ground state for c¢; >0
(c; <0). They also shift the ferromagnetic (FM)-BN and
cyclic-UN phase boundaries [19], but the shifts are too small
to be seen in the above scales of the axes. The values of ¢; and ¢,
for 8Rb determined from the spin-exchange dynamics experi-
ments [25] and their error bars imply that the ground state is likely
to be the UN phase. The spherical harmonic representation of the
spinor order parameter is also displayed with the color showing
the phase according to the color gauge on the right.

is larger than that of the Hamiltonian. In fact, the UN,
biaxial-nematic (BN), and dihedral-2 phases belonging to
this manifold can be transformed to each other by SO(5)
rotations in spin space [17]. However, quantum fluctuations
lift the degeneracy in the nematic phase and select the UN
phase as the true ground state of 8’Rb [7,8] (see Fig. 1). As a
result, the gNG modes are expected to acquire a finite energy
gap [17], i.e., the phenomenon of quantum mass acquis-
ition [14].

Emergent energy gap.—Since the emergent energy
gap of the qNG modes results from the lift of the
degeneracy caused by quantum fluctuations, it might be
thought that the energy scale of the gap is determined by
the zero-point energy per particle E,, = EPN — EWN =

6.4¢,n(cy/co)**Vna®, where EBN and EVN are the energies
of the BN and UN phases with the Lee-Huang-Yang
corrections [27,29]. This energy scale is too small in typical
ultracold atom experiments [30], and therefore it seems
impossible to probe the qNG modes. However, we find that
the BN phase is dynamically unstable as its excitation
energy involves a nonzero imaginary part due to beyond-
Bogoliubov quantum corrections [19], and therefore the
zero-point energy plays no role in the mass acquisition
mechanism. In fact, the energy gap of the qNG modes will be
shown to be much larger than previously imagined.

To directly evaluate the magnitude of the emergent energy
gap of the qNG modes, we use the spinor Beliaev theory
[19-22]. We start from the Dyson equation [31,32]

Gii(p) = (G*)5(p) + (G52 ()G, (P). ()
where p = (o, p) denotes a four-vector of the frequency and
wave number, and G, G°, and X represent the interacting
Green’s function, the noninteracting Green’s function, and
the self-energy, respectively; they are 10 x 10 matrices with
j.j.m,m =2,1,..., =2 labeling the magnetic sublevels
and the values of a, f3, v, é indicating the normal (11,22) and
anomalous (12,21) components. The noninteracting Green’s
function is given by G%(p) = [w — (ey —u)/h + in]™",
where €9 = 7?p?/(2M) with M being the atomic mass,
is the chemical potential, and # is an infinitesimal positive
number. For the UN phase, the condensate atoms occupy
only the mp = 0 state. The corresponding spinor order
parameter is 2‘ =(0,0,1,0,0)T. Since the UN phase
possesses the time-reversal and space-inversion sym-
metries, there is a twofold degeneracy in the excitation
spectrum @; , = w_j .

For a weakly interacting dilute Bose gas, it is appropriate
to make expansions of £ and y with respect to the small
dimensionless parameter na® < 1, where 7 is the atomic
density and a = (4a, + 3a,)/7 is the average s-wave
scattering length (¢, = 4xh’*a/M). These expansions are
represented by the sums of Feynman diagrams as X =

>, Y and y = >, 4™, where £ and u are the
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contributions to the self-energy and the chemical potential
from the nth-order Feynman diagrams [19,22]. The
Bogoliubov and Beliaev theories include the Feynman
diagrams up to the first and second orders, respectively.
The second-order diagrams involve virtual excitations of the
condensate, i.e., quantum fluctuations, which are absent in
the first-order diagrams [32]. It is these quantum fluctuations
that give rise to the energy gap of the qNG modes as
shown below.

In the first-order calculation, the poles of the Green’s

function reproduce the Bogoliubov spectra [28,32]: hw(il%’p =

\/€n(e9—2con/5), haﬁf.p = \/eg[eg +2(3¢; = ¢y/5)n],

and hao) = \/eg[eg+2(c0+c2/5)n]. All of the five

elementary excitations are gapless. Specifically, a)gf) and

a)gl).P are the spectra of one phonon and two magnons,

respectively, which arise from spontaneous breaking of the
gauge and spin-rotational symmetries, while the remaining

two gapless quadrupolar (nematic) excitations wg.p are the

gqNG modes.

By adding the contributions to X and u from the second-
order Feynman diagrams, we obtain the emergent energy
gap A = hw,, 5 of the gNG modes as [32]

(3] sl ) =)
(3)

where x=—c,/(15¢;) and f(x)=64,/108/x[(1+x)>>—
4x(14x)3242x32(14x) +3x*(1+x)"/2=2x%?].  Using
the parameters of 8Rb with n = 4 x 10'* cm™ as in the
experiments in Refs [34,35], we plot the energy gap as a
function of —c,/c; over the uncertainty range of the
interaction ¢, [25] in Fig. 2. Notice that A strongly depends
on the relative strength of the spin-dependent interactions, and
thus its measurement can provide us with useful information
about the coupling constant ¢, that has yet to be precisely
determined. In particular, the value of A at the UN-cyclic
phase boundary YNCL=—342¢,(c,/co)¥*Vna® [19]
gives the lower bound for the energy gap: A, =
27.O6c1n(c1/c0)3/zm > (. This result shows that the
gNG modes acquire a finite energy gap; i.e., they become
massive. At ¢, = —c;, the energy gap reduces to A =
48/(5v/57)c n(cy/co)¥/*Vna®, the magnitude of which
is as large as A/h = 2.3 Hz. We note that since ¢, /¢y < 1
and na® < 1, the obtained energy gap is 2 orders of
magnitude larger than the zero-point energy per particle £, =
6.4c,n(ci/co)**Vna*=nx0.008Hz (see Fig. 2). The
obtained large energy gap implies that the ground state

of the UN phase is much more robust than previously
imagined.

A/h (Hz)
257
20p
157
1.0
. .
05k 0 001 o.oz3 i
S
Cyclic  Uniaxial-Nematic
0 ‘ ‘ ‘ ‘ e e e
of 67 04 06 08 10 2o

FIG. 2 (color online). Emergent energy gap of the quasi-
Nambu-Goldstone mode in the uniaxial-nematic phase of the
spin-2 8’Rb BEC (blue curve) as a function of the relative
strength of the spin-dependent interactions. Here we plot over the
uncertainty range of the interaction ¢, shown in Fig. 1 and use the
atomic density n = 4 x 10" cm™3 [34,35]. The inset magnifies
the region of —c, < ¢y. There exists a positive lower bound A,
for the energy gap of qNG modes. The zero-point energy per
particle (red line), which is much smaller than A ;,, is shown for
comparison. Note that the UN-cyclic phase boundary is shifted
from its mean-field counterpart at ¢, = 0 due to the zero-point
energy [19].

Since the NG modes are gapless at the Bogoliubov
level, the energy gap obtained by the Beliaev theory is the
leading-order term in the asymptotic expansion of the
excitation energy with respect to the dimensionless param-
eter na® < 1, and higher-order terms should be negligibly
small. In fact, although the emergent energy gap is 2 orders
of magnitude larger than the zero-point energy, it is still
small compared with the mean-field interaction energies,
which ensures the validity of the perturbative expansion.
For the parameters used in Fig. 2, the mean-field spin-
dependent interaction energy is approximately 7 x 190 Hz
at ¢, = —c, which is much larger than the obtained energy
gap. Moreover, for a spinless (scalar) BEC, it has been
justified by both experiments and quantum Monte Carlo
simulations that higher-order terms beyond the Beliaev
theory are negligibly small for the parameters of typical
ultracold atom experiments [36].

The energy gap of the qNG modes can be directly
measured by the phase-contrast imaging. Indeed, the NG
mode with the lowest energy can be created in a finite
system by uniformly and coherently transferring a fraction
of atoms from the [my = 0) to |m; = £2) hyperfine states.
The relative phase between those atoms then oscillates with
a frequency given by the energy gap of the NG modes.
Since the phase-contrast imaging signal depends on the
relative phase between |mp = 0) and |mp = +2) atoms,
which reflects the nematicity of the spinor condensate
[37,38], the energy gap of the gqNG modes can be directly
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obtained from the oscillating component of the probe
signal. A similar method has been used to measure the
dipolar energy gap of magnons in the spin-1 ferromagnetic
phase [39]. In our case, however, the effect of the magnetic
dipole interaction on the energy gap of the qNG modes is
strongly suppressed since the magnetization of the con-
densate remains zero as long as atoms are not excited to the
|mp = £1) states. It should also be noted that the finite size
of a trapped BEC makes the fluctuation-induced energy
gap of the qNG modes larger, rather than smears it out, due
to the enhancement of quantum fluctuations in a confined
system. Therefore, the right-hand side of Eq. (3) gives the
lower bound for the energy gap in a trapped condensate.

Once the NG modes acquire a mass, the Z, vortex, a
topological structure, is stabilized and might be observed
in experiments. Around this vortex, the symmetry axis
of the UN phase rotates by x with the spinor order
parameter at a point far from the vortex core given by
&z, = (V6ei?/4,0,-1/2,0,/6e7# /4)T, where ¢ denotes
the azimuthal angle in real space [29]. The w = =£1 phase
winding numbers for the myp = £2 spin components can be
created by transferring the angular momentum between a
Laguerre-Gaussian beam and atoms [40]. Inside the vortex
core, the order parameter deviates from that of the UN
phase but lies within the manifold of nematic phases.
Hence, the core size is determined by the balance between
the kinetic energy and the energy difference between
the two phases, which is given by the energy gap. The
estimated energy gap A/A = 2.3 Hz corresponds to the
vortex core of the order of tens of um, which is slightly
larger than the typical Thomas-Fermi length of a BEC. The
vortex core can, however, be made smaller in, for example,
a highly oblate condensate since fluctuations and conse-
quently the energy gap would be enhanced in lower
dimensions. Notice that even when the energy gap of
the qNG modes is much smaller than the temperature of the
condensate, the vortex still remains stable as a consequence
of Bose enhancement. A similar coherence effect has been
observed in the superfluid He [41].

Propagation of quasiparticles.—In addition to the emer-
gent energy gap of the qNG modes, quantum fluctuations
also give a correction to the propagation velocity of these
quasiparticles. In the low-momentum regime, the
Bogoliubov dispersion relation of the NG modes is linear:
a)g;_p = Uéﬁ(}‘m with the first-order propagation velocity
given by vfﬁ\;G = y/|ca|n/(5M). Since ¢y > ¢y,
spin-2 8’Rb BEC, concerning the modification of the
propagation velocity, we can concentrate on the effect of
fluctuations in the particle-number density and ignore that
of spin-density fluctuations. In the momentum regime
satisfying A < €p < |¢;|n, where the modified dispersion

relation is linear, the spectrum of the gNG modes can be

expressed as wf;.p = a)g.P + [2;(2)(17) - ng(_P)]/z-

Here we ignore terms involving small factors of A/ eg and

c,| for the

ep/(Jc2|n). By summing all the contributions to X1} from
the second-order Feynman diagrams, we obtain the second-
order dispersion relation of the qNG modes wfz)vp =

vé§G|p| with the modified propagation velocity vfﬁ}G =

(1 —4+/na’/z)\/|c|n/(5M) [32]. From the expressions

of U((ﬁ\;c, and U((]?\%G, we find that the propagation of the NG

modes is hindered by their interactions with noncondensed
atoms. A similar phenomenon occurs with magnons in
spin-1 BECs which has been predicted [22] and observed
[39]. This can be understood by noting that the gNG modes
in spin-2 BECs represent the spatially periodic modulations
of the spin nematicity that are uncorrelated with fluctua-
tions in the particle-number density, thus leading to the
resistance. In contrast, the propagation velocity of phonons
is enhanced by quantum fluctuations [20]. The restoring
force resulting from the inhomogeneity brought about by the
density correlation at zero temperature makes the system
more rigid with a smaller compressibility compared with a
homogeneous state, which results in a larger sound velocity.

Conclusion.—We have found that spinor Bose-Einstein
condensates offer an excellent test bed for the quest of the
quasi-Nambu-Goldstone mode and for the study of the
phenomenon of quantum mass acquisition. The emergent
energy gap of the qNG mode turns out to be 2 orders of
magnitude larger than the zero-point energy, indicating
much greater robustness of the ground state of the con-
densate than previously imagined. This extraordinarily
large energy gap is a consequence of the dynamical
instability in spinor condensates. The propagation velocity
of the NG quasiparticle is found to be decreased by
fluctuations in the particle-number density, which can be
verified experimentally.
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