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We establish theoretically that in nonmagnetic semiconducting bilayer or multilayer thin film systems
rolled up into compact quasi-one-dimensional nanoarchitectures, the ballistic magnetoresistance is very
anisotropic: conductances depend strongly on the direction of an externally applied magnetic field. This
phenomenon originates from the curved open geometry of rolled-up nanotubes, which leads to a tunability
of the number of quasi-one-dimensional magnetic subbands crossing the Fermi energy. The experimental
significance of this phenomenon is illustrated by a sizable anisotropy that scales with the inverse of the
winding number, and persists up to a critical temperature that can be strongly enhanced by increasing the
strength of the external magnetic field or the characteristic radius of curvature, and can reach room
temperature.
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In 1857, Thomson discovered that the resistivity of bulk
ferromagnetic metals depends on the relative angle between
the electric current and the magnetization direction [1]. The
prediction of this anisotropic magnetoresistance (AMR),
caused by an anisotropy in the electron scattering due to
spin-orbit interaction, was experimentally verified more
than a century later in iron, cobalt, and nickel alloys. Since
then, the interest in this phenomenon has received a boost
thanks to the development of AMR sensors for magnetic
recording [2,3].
It was recently proposed that this phenomenon might also

occur in ferromagnetic Fe and Ni nanowires [4]. Contrary to
macroscopic samples, in miniaturized objects with character-
istic dimensions less than the electronic mean free path,
electronic transport is ballistic rather than diffusive, and
electron scattering does not contribute to the conductance.
The ballistic conductance of a quasi-one-dimensional (1D)
magnetic nanostructure with a slowly varying constriction of
width of the order of the Fermi wavelength λF is indeed
simply given byG ¼ Ne2=h, whereN is the number of open
conducting channels [5]. Because of the strong spin-orbit
coupling in these nanostructures, the number of transverse
modes at the Fermi energy changes with the magnetization
direction and leads ultimately to a ballistic anisotropic
magnetoresistance (BAMR).
In this Letter, we show that a strong BAMR occurs in

the electronic quantum transport of compact quasi-1D
tubular nanostructures obtained by the self-rolling of
strained thin films [6], when subject to an externally
applied magnetic field. Contrary to the nanostructures
of magnetic materials mentioned above, the BAMR in
these nanoarchitectures is entirely due to the open curved
geometry of the rolled-up tubes, which breaks the rotational

symmetry of the three-dimensional (3D) embedding space.
As a result, rolled-up tubes of conventional nonmagnetic
semiconducting materials display a sizable BAMR, which
scales with the inverse of the number of windings of the
tubes, and persists up to a temperature that can be tuned to be
as large as room temperature by tailoring either the strength
of the magnetic field or the radius of curvature.
Our starting point is a curved two-dimensional electron

gas (2DEG) in a GaAs heterojunction (effective mass
m⋆ ¼ 0.067me), as obtained by selective underetching of
a pseudomorphically strained bilayer [c.f. Fig. 1(a)] or
multilayer semiconducting thin films [7–11]. We consider
the length of the tube along its axis to be smaller than the
characteristic mean free path of the high-mobility curved
2DEG [l≃ 10μm in (Al,Ga)As heterojunctions [9]]. We
also assume the inner radius of curvature, Rin, and the outer
radius of curvature, Rout ¼ Rin þ wd where w is the wind-
ing number and d the total thickness of the layer stack in
which the 2DEG is embedded, to be Rin;out ≃ 100 nm, and
thus comparable to the large Fermi wavelength λF ≃ 40 nm
of the low-density electron gas. Such a compact 3D
nanoarchitecture can also be viewed as a curved quantum
point contact [12,13] with a circular cross section and width
corresponding to the diameter of the nanotube. In this
regime, quantum-size effects appear that lead to ballistic
conductance quantization both at zero field and in the
presence of a magnetic field [13]. In the latter case, the
nature of the quantum states, and thus the ballistic
conductance itself, strongly depends on whether one
considers open or periodic boundary conditions.
To show this, we first neglect the difference between the

inner and the outer radius of the nanotube (Rin ≡ Rout ≡ R),
and thus consider a cylindrical 2DEG with periodic
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boundary conditions in an external magnetic field [14,15],
for which the radius of curvature is much larger than the
Landau magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
. Since the radius

of curvature is in the hundreds of nanometers scale, this
regime can be reached already if magnetic fields on the
scale of one Tesla are externally applied. This also implies
that one can neglect the Zeeman splitting removing the
spin degeneracy and take only into account the orbital
effect of the magnetic field. The large separation between
the Landau magnetic length and the radius of curvature
allows for the formation of cyclotron orbits centered at the
two positions where the tangential plane of the nano-
structure is orthogonal to the magnetic field direction [see
Fig. 1(b)]. The appearance of cyclotron orbits is reflected,
in turn, in the formation of doubly degenerate quasi-1D
Landau-like states. This is demonstrated in Fig. 2(a), where
we show the energy spectrum of a 2DEG confined to a
cylindrical surface [16,17] under the influence of a trans-
versal magnetic field of strength 1.65 T [18,19] (see
Supplemental Material [20]). At large values of the
momentum kz along the translationally invariant tube axis
direction, the flat quasi-1D Landau-like subbands, how-
ever, start to acquire a characteristic parabolic dispersion
[c.f. Fig. 2(a)]. One can identify these dispersive states
as snake states [23] centered, due to Lorentz force, at the
two points where the tangential plane of the nanostructure
is parallel to the magnetic field direction [c.f. Fig. 1(b)]. As
we show in the Supplemental Material [20], the appearance
of snake electron trajectories results from the fact that in
the immediate vicinity of the orbit centers, the spatially
inhomogeneous normal component of the externally applied
magnetic field switches its sign.

Next, we explicitly take into account the difference
between the inner and outer radius of curvature, and,
following Ref. [24], consider the 2DEG confined to a
cylindrical surface whose cross section is approximated by
an Archimedean spiral with polar equation rðϕÞ ¼ Rinþ
dϕ=ð2πÞ. We assume periodic boundary conditions along
the tube axis ẑ, and open boundary conditions with ϕ ∈
ð0; 2πwÞ along the azimuthal direction. The qualitative
change in the nature of the quantum states for the open
geometry is shown in Fig. 1(b) where we sketch the
different quantum states appearing in a single wound
(w ¼ 1) rolled-up nanotube (RUNT), subject to a magnetic
field whose direction θ with respect to the edge axis
[c.f. Fig. 1(a)] is set to zero. We emphasize that generally
the winding number will take a noninteger value w > 1 due
to the unavoidable presence of overlapping fringes as
found in experiments [6] and computer simulations [25].
This, however, does not qualitatively change the main
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FIG. 2 (color online). (a) Magnetic spectrum for a nanotube
with Rin ¼ 32π nm subject to a 1.65 T transversal magnetic field
assuming periodic boundary conditions (BCs). kz is the momen-
tum along the tube axis. (b) Same for a single wound RUNTwith
open boundary conditions and magnetic field oriented along the
edge axis (θ≡ 0). The green and orange lines explicitly show the
dispersive edge states that are absent assuming periodic boundary
conditions. (c) and (d) show the evolution of the magnetic
spectrum of panel (b) varying the magnetic field direction to
θ ¼ π=4 and θ ¼ π=2 respectively.
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FIG. 1 (color online). (a) Cross section of a rolled-up nanotube
with 1.1 windings perpendicular to the tube axis. Rin, Rout
indicate the inner and outer radii of curvature. The black line
indicates the 2DEG embedded in a bilayer stack. (b) Cartoon
representation of the magnetic states for a 2DEG on a nanotube
with periodic boundary conditions. (c) Same for open boundary
conditions.
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features of the magnetic spectra, which are entirely set by
the presence, and not the precise location, of the open
boundaries.
The presence of the boundaries does not influence the

formation of the snake states discussed above. However,
due to the hard walls, one of the two cyclotron orbits
encountered in the closed geometry fractionalizes into two
skipping orbits for which a clear dispersion along kz is
expected. Figure 2(b) shows the ensuing energy spectrum
with d≃ 12.5 nm, Rin ≃ 100 nm and a magnetic field
strength, as before, of 1.65 T (see Supplemental Material
[20]). One can identify a single nondegenerate quasi-1D
Landau-like state now coexisting for kz ≃ 0 with two
dispersive edge states localized at the inner and outer
radius of the RUNT, which distinctly differentiate the
magnetic spectra of rolled-up tubular nanostructures with
respect to seamless tubes as carbon nanotubes.
Having established the qualitative difference between

the magnetic spectra with periodic and open boundary
conditions, we now discuss the interplay between the
location of the hard-wall boundaries and the direction of
the externally applied magnetic field. Since, as mentioned
above, the open curved geometry of a spiral RUNT breaks
the rotational symmetry of the embedding 3D space, the
features of the magnetic spectra are drastically altered as the
direction of the magnetic field changes. This is immediately
manifested in Fig. 2 where we show the evolution of the
magnetic spectrum of Fig. 2(b) by applying two consecu-
tive 45° tilts of the magnetic field while keeping its strength
constant. As shown in Fig. 2(c) the first 45° rotation of
the magnetic field direction restores a quasi-1D Landau
state doublet for kz ≃ 0 due to the insensitiveness of the
small radii cyclotron orbits centered at ϕ ¼ π=4 to the hard
walls. The same holds true for the snake states at large
values of kz > 0 whose orbits are centered at ϕ ¼ 7π=4.
On top of this, we find the two edge states with skipping
orbits at the inner and outer radius of the nanotube to appear
for intermediate values of momentum kz > 0 [c.f. the green
and orange lines in Fig. 2(c)]. Considering instead the
magnetic field direction perpendicular to the edge axis
leads to the magnetic spectrum shown in Fig. 2(d). It
strongly resembles the spectrum for the periodic boundary
conditions of Fig. 2(a) with the following caveat: due to the
hard walls, the snake states at large momenta kz > 0 are
substituted by edge states. This, however, does not change
qualitatively the magnetic spectrum apart from an asym-
metry in the dispersion around kz ¼ 0 due to the different
nature of the magnetic states, i.e., snake orbits for kz < 0

and skipping orbits for kz > 0.
The aforementioned features of the magnetic spectra

persist up to a critical energy scale Ec given by the
characteristic Landau level energy splitting ℏω, with ω
the cyclotron frequency, renormalized by a geometrically
tunable factor R2

in=ð2l2BÞ (see Fig. S2 in the Supplemental
Material [20]). This results from the following classical

trajectories analysis: the existence of quasi-1D Landau
levels is preserved as long as the radius of the cyclotron
orbits kFl2B—with kF the Fermi momentum—does not
exceed the curvature radius. In the opposite regime, indeed,
traversing trajectories [12] appear, and, independent of
the magnetic field direction, edge and snake states coexist
with magnetoelectric subbands. For a 2DEG in GaAs
heterojunctions, we find the threshold between the two
regimes for our chosen parameter set to be ≃36 meV—an
energy larger than kBT at room temperature.
With the magnetic spectra for different magnetic field

directions in our hands, we have then determined the ballistic
conductance of our single-wound nanotube neglecting
intersubband scattering processes [26–30]. Within this
approximation, the Landauer formula for the two-terminal
conductance including the thermal smearing of the Fermi-
Dirac distribution becomes [31,32]

GðEF; T; θÞ ¼
Z

∞

0

GðE; 0; θÞ ∂f
∂EF

dE; ð1Þ

where f indicates the Fermi-Dirac distribution, EF is the
Fermi energy while GðE; 0; θÞ ¼ 2e2NðθÞ=h is the con-
ductance at zero temperature proportional to the number
NðθÞ of occupied magnetoelectric subbands. Figure 3(a)
shows the behavior of the low-temperature magnetoconduc-
tance as a function of the inverse of the Fermi wavelength of
the 2DEG λF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2π=n
p

. Here n is the electron density given
by

nðEF; T; θÞ ¼
2

L

X
i

Z
∞

−∞

dkz
2π

f½Eiðkz; θÞ − EF; T�; ð2Þ

where the index i runs over the occupied one-dimensional
subbands, L is the total arclength of the nanotube section,
and the factor of 2 accounts for spin degeneracy. Independent
of the direction of the externally applied magnetic field, the
low-temperature magnetoconductance shows as a steplike
increase, which is a direct consequence of the effective one
dimensionality of the curved nanoarchitecture. However, the

0

5

10

15

20

25

G
 [

2e
  /

h]
2

0.0 0.5 1.0 1.5 2.0 2.5

(a)

T = 0.1 K

G (θ = 0)

G (θ = π/2)

λF [ 10  nm  ]-2 -1-1

0 1 2 3 4 5 6
0

10

20

30

40

50

B
A

M
R

(0
)

[%
]

(b)

0.1 K
20 K
100 K
300 K

FIG. 3 (color online). (a) Low-temperature magnetoconduc-
tance measured in 2e2=h units as a function of the inverse of the
2DEG Fermi wavelength for a magnetic field oriented parallel to
the edge axis (blue line) and perpendicular to it (purple line).
(b) Maximum value of the anisotropy BAMR(0) for temperatures
up to room temperature.
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different features of the magnetic spectra reported in
Fig. 2 lead to a substantial BAMR whose magnitude we
define [4] as

BAMRðθÞ ¼ GðθÞ −Gðπ=2Þ
Gðπ=2Þ

measured from the reference direction perpendicular to
the edge axis where the ballistic conductance takes its
minimum value. In Fig. 3(b) we illustrate the relevance of
the BAMR effect by showing that the magnitude at θ ¼ 0
extends over a wide range of λF, and persists down to the
critical Fermi wavelength λcF ≃ 2πl2B=R (≃25 nm for our
set of parameters) where the cyclotron orbit’s radius
balances the radius of curvature.
The conductance steps disappear at temperatures T >

ℏω=ð4kBÞ, i.e., when the width of the thermal smearing is
larger than the subband splitting at the Fermi level.
Remarkably, this thermal broadening does not endanger
the occurrence of the BAMR. The onset of the anisotropy in
the magnetoconductance is indeed regulated by the appear-
ance of quasi-1D Landau states with cyclotron orbits,
one of which, by tilting the magnetic field, fractionalizes
into skipping orbits contributing to the conductance.
As mentioned above, this occurs at the energy scale Ec,
which is much larger than the subband splitting ≃3 meV.
In Fig. 3(b) we prove indeed that a sizable BAMR survives
at room temperature. Even more, as the effect of the thermal
broadening increases, we find that the angular dependence
of the BAMR [see Fig. 4(a)] can be accurately described by
assuming the functional form of the resistivity for the
classical anisotropic magnetoresistance effect [4]

ρðθÞ ¼ ρð0Þ þ ½ρðπ=2Þ − ρð0Þ�sin2θ: ð3Þ

On top of this, we find the BAMR effect to be robust and
independent of geometric details. We have indeed gener-
alized our calculations to RUNTs with winding numbers
w ¼ 1.5, 2 (see Supplemental Material [20]) and found that
the BAMR magnitude ∝ 1=w [c.f. Fig. 4(b)], as it can be

intuitively understood by considering that the number of
snake and Landau states scales as w while the number of
edge states is independent of it.
To sum up, we have predicted the existence of a ballistic

anisotropic magnetoresistance—a change in the ballistic
conductance with the direction of an externally applied
magnetic field—in compact rolled-up tubular nanostruc-
tures of conventional nonmagnetic semiconducting materi-
als [33–37]. The occurrence of this phenomenon is entirely
due to the open curved geometry of these nanoarchitectures
and is thus independent of geometric details of the nano-
structures. A classical electron trajectories analysis shows
that a sizable BAMR occurs whenever the Fermi wave-
length of the 2DEG λF > 2πl2B=R and persists even in the
classical regime up to a critical temperature Tc ∝ R2=l4B.
As a result, a strong anisotropy in the magnetoconductance
can be expected at room temperature and weak external
magnetic fields in present day curved nanostructures
manufactured with the rolled-up nanotechnology [6,38]
where radii of curvatures in the hundreds of nanometers
range can be achieved.
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