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Silicon nitride (SiN) micro- and nanomechanical resonators have attracted a lot of attention in various
research fields due to their exceptionally high quality factors (Qs). Despite their popularity, the origin of
the limiting loss mechanisms in these structures has remained controversial. In this Letter we propose an
analytical model combining acoustic radiation loss with intrinsic loss. The model accurately predicts the
resulting mode-dependent Qs of low-stress silicon-rich and high-stress stoichiometric SiN membranes.
The large acoustic mismatch of the low-stress membrane to the substrate seems to minimize radiation loss
and Qs of higher modes (nAm > 3) are limited by intrinsic losses. The study of these intrinsic losses
in low-stress membranes reveals a linear dependence with the membrane thickness. This finding was
confirmed by comparing the intrinsic dissipation of arbitrary (membranes, strings, and cantilevers) SiN
resonators extracted from literature, suggesting surface loss as ubiquitous damping mechanism in thin
SiN resonators with Qs = fhand f# = 6 x 10'© £ 4 x 10'° m~!. Based on the intrinsic loss the maximal
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achievable Os and Qf products for SiN membranes and strings are outlined.
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Since the discovery of the exceptionally high quality
factors (Q) of nanomechanical silicon nitride (SiN) reso-
nators [1,2], SiN strings and membranes have become the
centerpiece of many experiments in the fields of cavity
optomechanics [3-14] and sensor technology [15-20]. For
example, in cavity optomechanics a high Q at high frequen-
cies is required in order to advance towards the quantum
regime of the mechanical resonators, and in resonant sensors
a high Q enables a better resolution. Despite the continuous
effort to understand and optimize Q of SiN resonators, the
underlying source of the limiting mechanism has remained
controversial. On the one hand, it has been suggested by
several groups that SiN resonators are limited by intrinsic
losses [21-23]. Conversely, it has recently been suggested
that radiation loss is the limiting factor for Q in SiN
membranes [24]. In this Letter we show that a model which
combines intrinsic and acoustic radiation losses accurately
predicts the mode-dependent Qs of low- and high-stress
SiN membranes. Finally, we show that the intrinsic loss in
thin arbitrary SiN resonators scales with thickness. This is
evidence that surface loss is the ubiquitous limiting damping
mechanism in micro- and nanomechanical SiN resonators.

The exceptionally high Qs of SiN resonators originate
from the high intrinsic tensile stress ¢ which increases the
stored energy without significantly increasing the energy
loss during vibration [21,22,25]. Assuming the energy loss
to be coupled to the local out-of-plane bending during
vibration, the intrinsic quality factor of a square membrane
under tensile stress Oy, is given by [25]

Qintr,a ~ Qintr [2)' + (n2 + m2)”2/12]—1 ’ (1)
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with A= (h/L)\/E/(126) where Qj,, is the intrinsic
quality factor of the relaxed resonator without the tensile
stress (like, for example, a cantilever), n, m are the mode
numbers, E the Young’s modulus, / the thickness, L is the
side length, and o is the tensile stress. The expression for
strings can also be developed and the final result is (1)
with m = 0 and n as the mode number, which is equal to an
earlier model for Q of loaded wires [26]. The value in square
brackets in (1) is a Q-enhancing factor that comprises two
terms. The left term is independent of the mode number
and comes from the local curvature of the resonator at the
clamped ends. The right term is dependent on the mode
numbers and originates from the curvature of the antinodes.
As per definition of a string or membrane 4 < 1 [27]. Hence,
the left term is a lot larger, that is, the damping due to the
membrane curvature at the clamped ends usually dominates
Qinwr.o- The local bending at the clamping is decreasing
exponentially with a decay length L. = LA [25,26,28]. For
stoichiometric SiN L. & 5 x h and the peak intrinsic damp-
ing for a 30 nm thick resonator thus happens withina 150 nm
wide band at the resonator ends close to the clamping.

Besides the intrinsic energy loss, the resonators can
lose energy through phonons tunneling into the substrate,
so-called acoustic radiation loss. It has been suggested that
acoustic radiation loss in SiN membranes is strongly mode
dependent and that modes with low mode numbers typi-
cally are limited by radiation loss [29]. An analytical model
based on the coupling of membrane modes to free modes of
the substrate has been fully developed [29,30]. For the sake
of simplicity, we provide here the asymptotic limit for a
square membrane
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, n’m?> L
Oraa ® 1.5(1%773 o) (2)
with the “acoustic mismatch” (phase velocity ratio)
between a semi-infinite substrate and the resonator
n~+/(Es/o)(p,/ps) with the mass densities p, and p,
of the substrate and resonator, respectively, and the Young’s
modulus of the substrate E;. The prefactor a is a fitting
parameter correcting for substrate imperfections resulting
from the specific chip mounting conditions. Under ideal
conditions of a semi-infinite substrate @ = 1. Equation (2)

is valid under the condition n,m > Vn*+m?/n.
Typically, n > 1 for SiN membranes and thus the radiation
loss model is valid for all n ~ m. Destructive interference
of the waves radiating into the substrate can lead to a
suppression of the acoustic radiation loss for increasing
harmonic modes (n = m) [29]. From (2) it can be seen that
acoustic radiation loss is minimal for harmonic modes
n =m and the envelope of maximal values is increasing
linearly with the mode numbers Q4 « n. For strings,
QO.aqa < L/w is predicted to be a function of the string width
w [31]. This effect has been observed with SiN strings
where Q increased with decreasing width and approached
an asymptotic limit given by intrinsic losses [21].
According to (2), Q.4 is a function of the acoustic
mismatch 7 between the resonator and a semi-infinite
substrate. This has recently been demonstrated with nano-
mechanical SiN strings whose Qs deteriorate when the
acoustic mismatch is reduced by touching the anchor
area with an AFM tip [32]. It has repeatedly been shown that
especially lower mode Qs are sensitive to the chip mounting
conditions and that these Qs can be increased by minimizing
the contact between chip and support [7,21,24,33]. A succ-
essful way of suppressing radiation losses is to locate the
mechanical structure within a well-designed phononic band
gap structure. This removes the free frame modes around
the membrane and suppresses the probability of phonon
tunneling, i.e., radiation loss [34,35]. The measured maximal
Qs of modes with negligible radiation loss of such a SiN
membrane had maximal Q values that correspond to exp-
ected values obtained with similar membranes without the
phononic band gap. This is strong evidence that Qs in SiN
membranes ultimately can be limited by intrinsic losses if
the chip is mounted carefully. This notion is supported by the
comparison of specific examples of Q values of stoichio-
metric SiN strings [22] and membranes [24] from literature
to the intrinsic (1) and acoustic radiation loss (2) models (see
Supplemental Material [36]). It suggests that intrinsic loss is
limiting Q in both cases, which contradicts the conclusions
made in [24] that radiation loss is the limiting mechanism.
There are strong indications that the overall mode
dependence of Q is best described by a combination of
both models. In order to test this we compare low-stress
silicon-rich SiN (SR-SiN) (from Norcada) and high-stress
stoichiometric SiN (fabricated in-house) membrane Q data

to a combined model that takes into account both intrinsic
and acoustic radiation losses

07" = Oiiro T Ot (3)

The membranes were characterized in the frequency
domain with a lock-in amplifier (Zurich Instruments
HF2PLL) in high vacuum (pressure < 10~ mbar) at room
temperature. The membrane motion was actuated in the
linear regime with a piezoelectric shaker and detected with
a laser vibrometer (MSA-500 Polytec GmbH).

Figures 1(a) and 1(b) show the measured Qs for various
modes of a SR-SiN and stoichiometric SiN membrane,
respectively, with equal dimensions. The combined model
(3), based on the exact solution of the radiation loss model
[30], predicts the measured values of both membranes with
good accuracy for a single chosen set of parameters Q;,
and a. These parameters resulted in the best possible fit
for both membranes. All the modes in Fig. 1 fulfill the
conditions required for the validity of the radiation loss
model. The maximal Qs of the low-stress membrane
Fig. 1(a) produce an envelope of maximal Q values which
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FIG. 1 (color online). Qs for modes (nAm < 9) of a (a) square
SR-SiN membrane (L =250 ym, ¢ =92 MPa, h = 100 nm)
and (b) square stoichiometric SiN membrane (L ~ 250 um,
o = 988 MPa, h ~ 100 nm). The chips were fixed with a double
sticky carbon disc (Agar Scientific). The red line represents
the highest quality factor value envelope due to intrinsic loss (1).
The diamonds represent the fit of all quality factor values with
(3), combining intrinsic and acoustic radiation loss based on the
exact model developed by Wilson-Rae et al. [30]. The material
properties of silicon were used for E; =130 GPa and
p, = 2300 kg/m>. (A: AND, V: OR).
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is accurately described by the intrinsic damping model (1)
(red line). Hence, the maximal Qs of the SR-SiN membrane
seem to be clearly limited by intrinsic losses. In contrast, the
peak Qs of the high-stress membrane are below the intrinsic
loss envelope and they thus seem to be limited by radiation
loss. The combined model (3) is shown as diamonds. In both
membranes, modes with n\vm < 2 are suppressed strongest
by acoustic radiation loss, as predicted by the model, and
as it was suggested by [25]. Both Si chips were fixed to
the piezoelectric actuator with a double sticky carbon tape.
The resonance frequencies are in the MHz regime, which
results in wavelengths in the Si that are larger than the Si chip
thickness. Hence, the carbon tape and the piezoshaker
become part of the substrate. The lower Young’s modulus
of the tape reduces the acoustic mismatch compared to
a pure Si substrate, which is reflected in the fit parameter
a = 0.1 < 1. The lower stress in the SR-SiN membrane
results in a better acoustic mismatch # and a lower Q;,,
envelope so that the maximal Qs are limited by intrinsic
losses, which entails Qs that are less scattered compared to
the high-stress membrane. SR-SiN membranes are thus the
optimal structures to investigate the origin of the intrinsic
loss, which is presented in the following part.

Figure 2(a) shows the extracted Q;,, from the maximal
Q envelope given by intrinsic losses (1) from a set of square
SR-SiN membranes with varying thicknesses 4 and lengths
L. The complete set of measured Q;,, are plotted in the
Supplemental Material [36]. The Q;,, values increase
steadily with membrane thickness %, independent of the
membrane size L. For low A the increase is following a
linear trend (see linear slope line). A similar linear trend has
been observed with Qs of SiN microcantilevers and was
assigned to surface loss Qq¢(h) = fh, with a slope /3 [37].
Hence, the observed linear relationship in Fig. 2(a) of Qi
with £ is strong evidence of surface loss. For structures with
areduced surface-to-volume ratio, surface loss will become
obsolete and the intrinsic loss will be dominated by volume
loss Q- This can be summarized by the formula

Ointr(h) = Qe (h) + O3 (4)

In order to get more data to test the model (4), we extract
Oine values for diverse SiN resonators from the literature.
The values are obtained directly from maximal Qs of un-
stressed cantilevers, and calculated by means of (1) from
prestressed strings and membranes. All Q;,, values are
listed in Fig. 2(b) together with the average values from
Fig. 2(a). All values are fitted with (4). Apparently, the
trend of all Q;,,s of all different SiN structures is described
accurately by a combination of surface and volume loss.
Our membranes had relatively large variations in A, L, and
o of £15%, £25%, and +75%, with respect to their
nominal values, which propagates to a total uncertainty in
the extraction of Q;,, of 260%. We took this as our error
estimation for all values (thin red lines). From the fit, an
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FIG. 2 (color online). (a) Intrinsic quality factors Q;,, as a
function of membrane thickness 4 of SR-SiN membranes. The
values represent the maximal values within the asymptotic Q;,,
envelope. The tensile stress varied strongly between 60 MPa <
0 < 253 MPa (determined by means of resonance frequency). The
lowest values are fitted with a linear slope. (b) Q;, values at room
temperature extracted from literature and this work as a function
of structure thickness /. The red line represents (4) fitted to all
values with f=6x 100+ 4 x 10! m~! and a volume loss
related Q,, = 28000 £ 2000. The fine red lines represent the
estimated error of f of £60%. The values are taken from 1: this
work; 2: [37]; 3: [21]; 4: [24]; 5: [1]; 6: [22]; 7: [34]; 8:[7]; 9: [38];
10: [25]; 11: [4]; 12: [39] (13: [40]—* has a high uncertainty as it
was only estimated from the HF etch rate; the initial thickness was
110 nm). All values were extracted assuming E = 240 GPa and
p = 3000 kg/m?>. The blue numbered values represent SiN reso-
nators that were in contact with hydrofluoric acid.

average surface loss parameter of S =6 x 10'0 4+ 4 x
10 m~' and a volume loss related Q.. = 28000 +
2000 can be extracted. It seems that all different structure
types made from either SR-SiN or stoichiometric SiN are
ultimately limited by surface loss. Volume loss starts to
significantly contribute in thicker resonators.

The origin of the observed surface loss could be manifold,
e.g., surface impurities or surface roughness. The chemical
analysis with x-ray photoelectron spectroscopy of the surface
of two SiN membranes [one commercial stoichiometric low-
pressure chemical vapor deposition (LPCVD) SiN membrane
from Norcada, and one stoichiometric LPCVD SiN mem-
brane fabricated in-house] revealed a high concentration of
oxygen and carbon (see Supplemental Material [36]). The
same finding was made earlier by Yang et al. [41] who found
oxygen and carbon concentration on the surface of LPCVD
SiN of 22 and 10 at. %, respectively. It has further been shown
that these specific SiN surface impurities remain after clean-
ing with hydrofluoric acid (HF) and 3-7 at. % of F impurities
are added [42]. Hence, surface impurities seem to be
ubiquitous in LPCVD SiN films and can even be increased,
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e.g., with an HF dip. In Fig. 2(b) all the SiN resonators that
were exposed to HF are listed with blue numbers and their
QOine Values are generally below the average. It seems that an
HF dip could increase surface loss. Another possible origin of
surface losses could be related to surface roughness which
was found to be in the range of 0.3-3 nm [41,43] of untreated
LPCVD SiN. Hence, surface roughness can become a
significant fraction of the total SiN thin film thickness.
Based on the Q;,, master curve for SiN from Fig. 2(b), it
is now possible to predict the maximal obtainable Qs for
harmonic modes n = m of square SiN membranes that are
limited by intrinsic loss. From Fig. 3(a) it becomes evident
that the thickness does not significantly influence Q of thin
membranes at low mode numbers, an effect that has been
observed experimentally [23]. This is a direct effect of the
Qin that decreases with thickness and hence counteracts
the Q-enhancing effect of a small 4 in (I). Thinner
membranes only result in higher Qs at higher modes.
For Fig. 3(b) the thickness is fixed to 30 nm. It is not
surprising that larger membranes result in higher Qs. But Q
starts to deteriorate with mode numbers when 1 becomes
large as, e.g., it was observed with short SiN strings [22]. In
quantum cavity optomechanics a figure of merit is the Q f
product. Qf > 6 x 10'? Hz is the minimum requirement
for room-temperature quantum optomechanics [44]. In
that case the thermal decoherence rate (kzT)/(27Qh) at
temperature 7 is smaller than the resonance frequency f.
The maximal Qf product obtainable with a SIN membrane
at room temperature is shown in Fig. 3(c). It seems that
the limit cannot be overcome in the fundamental mode
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FIG. 3 (color online). Prediction of maximal Q and Qf values
obtainable with a square SiN membrane at room temperature
for harmonic modes (n = m) that are limited by intrinsic loss.
A value error of 60% has to be assumed.

independent of membrane size, confirming the experimen-
tal findings from Wilson et al [7]. For SiN string
resonators, the maximal Q values for low mode numbers
are equal to the ones displayed in Figs. 3(a) and 3(b), but
the Qf product values have to be divided by /2. It has
been shown that intrinsic damping is reduced at cryogenic
temperatures, which means that all predicted values in
Fig. 3 will increase accordingly [34,40,45].

In conclusion, Q in prestressed SiN micro- and nano-
mechanical resonators is limited by a combination of
intrinsic and acoustic radiation loss. In membranes, both
respective Qs scale linearly with the dimensions (L/h).
Hence, the limiting damping mechanism is mainly deter-
mined by the acoustic mismatch of the membrane to the
substrate (7). In high-stress SiN membranes, 7 is reduced
and the maximal intrinsic loss Q limit is increased; hence,
the resulting Q values are strongly mode dependent and are
scattered due to radiation loss. The maximal Qs can become
limited by intrinsic loss by maximizing the acoustic mis-
match, e.g., by mounting the chip freely or with a phononic
band gap structure. In contrast, low-stress SiN membranes
have a higher acoustic mismatch to the substrate and the
maximal intrinsic Q limitis lower. Hence, the resulting Qs of
higher mode numbers (nAm > 3) reach an upper envelope
that is limited by intrinsic losses, while lower mode numbers
(nvm < 2) can be limited by radiation loss. Generally,
radiation loss is minimal for symmetric modes (n ~ m).
In SiN strings, radiation loss scales inversely with width
and narrow strings can become limited by intrinsic loss.

The intrinsic quality factors Q;,, of thin low-stress SiN
membranes scale linearly with the membrane thickness,
which is strong evidence of surface loss. The same linear
scaling of Qg+ = fh has been confirmed by independent
SiN Q data taken from literature (cantilevers, strings and
membranes) which is evidence that surface loss is the
ubiquitous limiting damping mechanism in thin arbitrary
SiN resonators with a scaling factor S =6 x 1010+
4 x 10'® m~!. For thin prestressed resonators that are limited
by intrinsic loss, the thickness dependent surface loss is
counteracting the Q enhancement at low mode numbers and
Q can only significantly be increased with the size L. Finally,
itseems that Of > 6 x 10'? Hz required for quantum cavity
optomechanics at room temperature cannot be reached with
the fundamental mode, independent of resonator length.

The framework of Q analysis presented here is readily
applicable to other emerging thin film mechanical string or
membrane-type resonators made of materials such as SiC
[46,47], InGaP [48], C (graphene) [49-51], C (diamond)
[52], or MoS, [53,54].
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