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We present a study of two model liquids with different interaction potentials, exhibiting similar structure
but significantly different dynamics at low temperatures. By evaluating the configurational entropy, we
show that the differences in the dynamics of these systems can be understood in terms of their
thermodynamic differences. Analyzing their structure, we demonstrate that differences in pair correlation
functions between the two systems, through their contribution to the entropy, dominate the differences in
their dynamics, and indeed overestimate the differences. Including the contribution of higher order
structural correlations to the entropy leads to smaller estimates for the relaxation times, as well as smaller
differences between the two studied systems.
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Many approaches toward understanding the dynamical
behavior of liquids attempt to predict dynamics in terms of
static structural correlations [1,2], often focussing on two-
body correlation functions. In turn, it has been argued that
the short range, repulsive interactions have a dominant role
in determining the pair correlation function, with the
attractions making a perturbative contribution. Such an
approach was shown to be effective in predicting the pair
correlation function for dense liquids interacting via the
Lennard-Jones (LJ) potential, by Weeks, Chandler, and
Andersen, who treated the LJ potential as a sum of a
repulsive part (referred to subsequently as the WCA
potential) and the attractive part [3]. If such a treatment
carries over to the analysis of dynamics, the expectation
would be that liquids with LJ and the corresponding WCA
interactions should have similar dynamics. However, in a
series of recent papers, Berthier and Tarjus have shown that
model liquids with LJ and WCA interactions, exhibiting
fairly similar structure, exhibit dramatically different
dynamics, characterized by a structural relaxation time,
at low temperatures [4–7]. In order to analyze this “non-
perturbative” effect of the attractive forces on the dynamics,
Berthier and Tarjus studied a number of “microscopic”
approaches to predict the dynamics, based on knowledge
of the static pair correlations. They conclude that the
approaches they analyze are unsuccessful in capturing
the differences in dynamics between the LJ and WCA
systems. Dyre and co-workers [8–10] have argued that the
origins of these observations are not specifically in the
inclusion or neglect of attractive interactions [10], but in
factors such as the inclusion of interactions of all first
shell neighbors [8], and the presence or absence of
scaling between systems or state points compared [9]. In
particular, Pedersen and Dyre [9] identify a purely repulsive

inverse-power-law (IPL) potential that has dynamics that
can be mapped to the LJ case studied by Bertheir and
Tarjus. These observations notwithstanding, the inability
to capture the differences between the LJ and WCA
systems highlighted by Berthier and Tarjus by predictive
approaches to dynamics remains an open issue. In this
regard, it has been suggested by Coslovich [11,12] that
higher order structural correlations may play a significant
role in determining dynamics, and he argues this point
by showing that the temperature variation of locally
preferred structures for the LJ and WCA systems tracks
that of the relaxation times [11]. Hocky et al. [13] show, by
evaluating the point-to-set length scales in the LJ, WCA,
and IPL liquids, that while the LJ and IPL liquids show
essentially the same temperature dependence, the WCA
system differs from these two, thereby offering a quanti-
tative explanation of the dynamics, in terms of a quantity
that has implicit dependence on two-body and many body
structural correlations.
Among the prominent predictive relationships between

equilibrium properties and dynamics for liquids at low
temperatures is the Adam-Gibbs relation [14]

τðTÞ ¼ τo exp

�
A
TSc

�
; ð1Þ

which expresses relaxation times τ in terms of a thermo-
dynamic quantity, the configurational entropy Sc. The
random first order transition theory [15], which relates
relaxation times to a growing static length scale for
activation, τ ∼ expðξψ=kBTÞ, with the static length [13]

depending on Sc as ξ ∼ S1=ðd−θÞc (d is the spatial dimen-
sionality, and θ is an exponent related to interface energy),
leads to the Adam-Gibbs relation for suitable values of
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exponents θ and ψ [16,17]. The usefulness of the Adam-
Gibbs relationship in comprehending the differences in
dynamics of the LJ andWCA systems has not been hitherto
explored.
In this Letter, we test whether the differences in the

interaction potential between the LJ and WCA systems,
while having a modest effect on structure, have a more
significant effect on the thermodynamics, and the Adam-
Gibbs (AG) relation can hence capture the quantitative
differences in the dynamics between these systems. We
further employ this relation as a tool to explore the
contributions of two-body and higher order structural
correlations, by considering a two-body approximation
to the configurational entropy. We find the following:
(1) The Adam-Gibbs relationship quantitatively captures
the differences in the dynamics between the LJ and WCA
systems. (2) Two body correlations alone, used to obtain an
approximation to the configurational entropy, yield a
significant difference in predicted relaxation times, indeed
overestimating the difference, indicating a strong sensitiv-
ity to changes in pair correlations. Reminiscent of the
predictions from mode coupling theory (MCT) calcula-
tions, however, the relaxation times are significantly
overestimated using only the two-body approximation to
the entropy. We note, however, that the AG relation is based
on activated dynamics unlike the MCT, and based on two-
body correlations alone, captures the difference between
the LJ and WCA systems under conditions when the
MCT fails to do so [5], such as at high densities [18].
(3) Multiparticle correlations are essential to correctly
compute the configurational entropy Sc in order for the
Adam-Gibbs relation to capture the dynamics accurately.
The residual multiparticle entropy (RMPE), arising from
many particle correlations, speeds up the dynamics at low
temperatures and is larger for the LJ system, which is at
odds with the notion that stronger multiparticle correlations
are responsible for the stronger temperature dependence
of the relaxation times but consistent with the observa-
tion that a significant contribution to higher order (three
body) correlations arises from the amplification of small
differences in correlation at the two-body level [11,12].
We, however, clarify that two-body correlations by them-
selves predict a more rapid slowing-down of dynamics, and
the inclusion of higher order correlations speeds up the
dynamics, but only relative to what is predicted by the two-
body correlation information.
We study the LJ andWCAversions of the Kob-Andersen

binary mixture at ρ ¼ 1.2, where the difference in dynam-
ics between the two systems is pronounced [7] with
simulation details as in Ref. [7] using LAMMPS simulation
code [19]. Lengths, temperatures, and times are given in
units of σAA, ϵAA=kB, ðmσ2AA=ϵAAÞ1=2, respectively. We
calculate the relaxation time τ from the overlap function
qðtÞ as described in Ref. [20], by the condition
qðt ¼ τÞ ¼ 1=e.

The temperature dependence of the relaxation times
described earlier in Ref. [4] shows that the LJ system
has a much stronger temperature dependence than the
WCA system. We quantify the temperature dependence
by fitting τðTÞ to the Vogel-Fulcher-Tammann (VFT)
expression τðTÞ¼τoexpf1=½KVFT(ðT=TVFTÞ−1)�g. The
resulting kinetic fragilities for the two systems are
KVFT¼0.19 for the LJ liquid and 0.14 for the WCA liquid,
with divergence temperatures TVFT ¼ 0.28 and 0.16,
respectively, with the ratio KLJ

VFT=K
WCA
VFT ¼ 1.36. The

VFT form can be obtained from the AG relation if TSc ¼
KT ½ðT=TKÞ − 1�, with the kinetic fragility KVFT given in
terms of the thermodynamic fragility KT (with TK ¼ TVFT)
by KVFT ¼ KT=A. The configurational entropies (per
particle) are calculated as the difference between the total
and vibrational entropies, Sc ¼ Stotal − Svib [21,22]. As
shown in Fig. 1(a) the vibrational entropies are similar
for the two systems. In the inset of Fig. 1(b)
we show that, by extrapolation, Sc for the LJ system
vanishes at a higher temperature, and (main panel) has a
higher thermodynamic fragility KT. Figure 1(c) shows the
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FIG. 1 (color online). (a) The temperature dependence
of vibrational entropy (Svib) for the LJ and WCA systems.
(b) Determination of thermodynamic fragility KT from the slope
of the linear fit. Inset: TK is the Kauzmann temperature obtained
from the linear fit from ScðTKÞ ¼ 0. TK is 0.27 and 0.134 for the
LJ and WCA systems, respectively. (c) The Adam-Gibbs plot,
showing that the differing temperature dependence of relaxation
times is quantitatively captured by the temperature variation of
the configurational entropy.

PRL 113, 225701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

28 NOVEMBER 2014

225701-2



Adam-Gibbs plot, τ vs 1=TSc. For both the LJ and WCA
systems, the AG relation is not only valid, but the slopes A
for the two systems (related to the high temperature
activation energy E∞ and the limiting value of Sc, S∞c ,
by A ¼ E∞S∞c ) are very close. Thus, the temperature
variation of the configurational entropy Sc fully captures
the differences in the dynamics between these two systems.
In order to discuss the contribution of two-body and

higher order static correlations to the dynamics, we con-
sider the per particle excess entropy Sex, defined by
Stotal ¼ Sid þ Sex, where Sid is the ideal gas entropy (per
particle) [22]. Sex can be expanded in an infinite series
Sex ¼ S2 þ S3 þ � � � ¼ S2 þ ΔS using Kirkwood’s factori-
zation [23] of the N-particle distribution function [24–26].
Sn is the “n” body contribution to the entropy. Thus, the
pair excess entropy is S2 and the higher order contributions
to excess entropy is given by the RMPE ΔS ¼ Sex − S2
[27]. S2 for a binary system can be written in terms of the
partial radial distribution functions

S2
kB

¼ −2πρ
X
α;β

xαxβ

Z
∞

0

fgαβðrÞ ln gαβðrÞ

− ½gαβðrÞ − 1�gr2dr; ð2Þ

where gαβðrÞ is the atom-atom pair correlation between
atoms of type α and β, N is the total number of particles, xα
is the mole fraction of component α in the mixture, and kB
is the Boltzmann constant. In Fig. 2 we show a comparison
of Sex and S2. Interestingly, for both the LJ and WCA
systems, starting out at high temperatures, being larger than
Sex as one may expect, S2 becomes smaller than Sex at low
temperatures. This behavior, previously noted in other
contexts [28–30], means that the RMPE, arising from
many body effects, is positive at low temperatures. This
change in sign in RMPE implies that although many body

correlations at high temperature slow down the dynamics as
may be expected, at low temperature their role is reversed.
Further, we note that the RMPE is at all temperatures bigger
for the LJ than the WCA system—thus, the role of many
body correlation at low temperatures is to increase the
entropy and to a greater extent for the LJ than the WCA
system.
At normal liquid temperatures, a semiquantitative cor-

relation between the dynamics (transport properties) and
thermodynamics (excess entropy), proposed by Rosenfeld
[31,32], has been extensively studied in recent times,
with the form τðTÞ ¼ C exp ½−KSex�, where C and K are
constants. Since the pair entropy S2 accounts for 80%–90%
of the excess entropy [33] (Fig. 2), many studies replace Sex
by S2 [7,34–37]. For the systems studied here this approxi-
mation is found to hold good for high T. We can write

τðTÞ ¼ C exp ½−KSex� ¼ τR2 ðTÞ exp ½−KΔS�; ð3Þ
where τR2 ðTÞ ¼ C exp ½−KS2�. C and K are obtained from
linear fits of ln τðTÞ against Sex at high temperatures (above
the temperatures T ¼ 0.8 and 0.6 for the LJ and WCA
systems, respectively). The τR2 thus obtained, plotted for the
LJ and WCA systems in Fig. 3 for high to intermediate
temperatures, agree well with τðTÞ since the contribution
from ΔS is only about 10% of Sex. As shown in the inset of
Fig. 3, the ratio of τ values for the LJ and WCA systems are
well approximated by that obtained with τR2 .
We next turn to the role of two-body and higher order

correlations in determining the dynamics as reflected in the
configurational entropy. To get an estimate of the configu-
rational entropy as predicted by the pair correlation we
rewrite Sc in terms of the pair contribution to the configu-
rational entropy Sc2

Sc ¼ Sid þ Sex − Svib ¼ Sid þ S2 þ ΔS − Svib

¼ Sc2 þ ΔS; ð4Þ

where Sc2 ¼ Sid þ S2 − Svib. As mentioned earlier the
vibrational entropies of the LJ and WCA systems are
found to be very close to each other [Fig. 1(a)]. However,
the apparently similar structures predict different S2 (Fig. 2)
and Sc2 values. We obtain the thermodynamic fragilities
KT2 as predicted by Sc2 following the same procedure as
described for Sc and find the LJ system to be more fragile.
Thus, even considering only two-body correlations we find
the LJ and the WCA systems to be thermodynamically
different. This finding is similar to the observation [12] that
significant changes in thermodynamic properties and also
higher order correlation functions may arise as a result of
amplification of small changes in the pair correlations.
To determine the effect of pair correlations on the low

temperature dynamics we estimate the relaxation times as
predicted by accounting only for two-body correlations,
τAG2 . To this end, we reexpress the AG relation as follows:
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FIG. 2 (color online). Plots of Sex and S2 versus temperature,
showing that the two quantities cross at intermediate
temperatures for both models. The crossover temperatures
are 0.77 and 0.61 for the LJ and WCA systems, respectively.
The dotted lines are a guide to the eye.
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τðTÞ ¼ τo exp

�
A
TSc

�
¼ τAG2 ðTÞ exp

�
−
A � ΔS
TSc2Sc

�
; ð5Þ

where τAG2 ðTÞ ¼ τo exp ðA=TSc2Þ. The τAG2 for the LJ and
the WCA systems are plotted in Fig. 3, as well as their ratio
(inset). The τAG2 diverge at higher temperatures than τðTÞ,
reminiscent of the behavior of relaxation times according to
MCT calculations. However, the τAG2 for the LJ and WCA
systems are widely different, and capture the corresponding
differences in τðTÞ, unlike relaxation times obtained from
the MCT and other microscopic theories, which rely on the
pair-correlation function gðrÞ, studied in Ref. [6].
Interestingly, however, the divergence temperatures TK2

(the temperature where Sc2 ¼ 0) almost coincide with the
MCT divergence temperatures Tc obtained from fits to
relaxation times for ρ ¼ 1.2,1.6, as shown in Table I.
Elucidating the significance of this observation requires
further investigations, to be pursued in the future.
As seen in the inset of Fig. 3, the ratio of relaxation times

is overestimated by the corresponding ratio of τAG2 . The
kinetic fragility KVFT2 as obtained by fitting the temper-
ature dependence of τAG2 to a VFT form shows that the LJ
system is more fragile. Their ratio KLJ

VFT2=K
WCA
VFT2 ¼ 1.94 is

bigger than 1.36 obtained from τðTÞ. Thus, considering
only the two-body contribution to the entropy, the Adam-
Gibbs relation overestimates the difference in the dynamics
between the LJ and WCA systems, rather than failing to
capture differences between them, contradicting the expect-
ation that the pair correlation contributions yield similar
dynamics, and that the many body correlations may drive
the difference between the two systems. Instead, the role
of many body correlations, other than lowering the pre-
dicted relaxation times for both systems, is also to reduce
the predicted difference between them. Although the value
of ΔS is similar over the whole temperature regime, it
plays a greater role at low temperatures. The crossover

temperatures, T ¼ 0.77 and 0.61 for the LJ and WCA
systems, respectively, demarcate the regime where multi-
particle correlations play a significant role, and round off
the divergence suggested by the MCT or the AG relation
using only two-body correlations.
The increase in ΔS with decreasing T is usually

associated with some ordering in the system [27,36,38],
which we now show is also reflected in the pair correlation
function. The first peak of the pair correlation function
shifts to the right [39] as the temperature decreases, as
shown in Fig. 4. Earlier studies have shown that the “A”
particles in both the LJ and WCA models show a tendency
toward fcc ordering [11,40,41]. As shown in the inset of
Fig. 4, the first peak position of the pair correlation function
indeed moves toward the value for the fcc lattice as the
temperature is lowered.
In summary, we have shown that the temperature

dependence of the configurational entropy, via the
Adam-Gibbs relation, explains quantitatively the
differences in the dynamics between the LJ and WCA
systems we study. Using only the two-body correlation
information to the configurational entropy, we have shown
that these correlations capture the differences in the
dynamics between the two systems, indeed overestimating
the differences, contrary to the expectation that the sim-
ilarity of pair correlation functions between the two
systems lead to similar predictions for the dynamics.
The contributions from the many body correlations speed
up the dynamics thus significantly correcting the overesti-
mation of the relaxation times as solely predicted by the
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WCA systems. Inset: their ratios for the LJ and WCA systems
versus 1=T.

TABLE I. Comparison of temperatures of diverging relaxation
time from MCT fits (Tc) and from the AG relation using the two-
body approximation to the entropy (TK2) for densities
ρ ¼ 1.2,1.6.

ρ ¼ 1.2 ρ ¼ 1.6

Tc TK2 Tc TK2

LJ 0.435 0.445 1.76 1.757
WCA 0.28 0.268 1.69 1.696
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pair correlation information and this effect is found to be
more pronounced for the LJ system. How the significant
structural changes, captured by pair correlation and higher
order structural correlations, may be related to the point-to-
set correlation length [13] is an important open question to
be addressed in future work.
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