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The change of resonance widths in an open system under a perturbation of its interior has been recently
introduced by Fyodorov and Savin [Phys. Rev. Lett. 108, 184101 (2012)] as a sensitive indicator of the
nonorthogonality of resonance states. We experimentally study universal statistics of this quantity in
weakly open two-dimensional microwave cavities and reverberation chambers realizing scalar and
electromagnetic vector fields, respectively. We consider global as well as local perturbations, and also
extend the theory to treat the latter case. The influence of the perturbation type on the width shift
distribution is more pronounced for many-channel systems. We compare the theory to experimental results
for one and two attached antennas and to numerical simulations with higher channel numbers, observing a
good agreement in all cases.
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The most general feature of open quantum or wave
systems is the set of complex resonances. They manifest
themselves in scattering through sharp energy variations of
the observables and correspond to the complex poles of the
S matrix. Theoretically, the latter are given by the eigen-
values En ¼ En − ði=2ÞΓn of the effective non-Hermitian
Hamiltonian Heff of the open system [1–4]. The anti-
Hermitian part of Heff originates from coupling between
the internal (bound) and continuum states, giving rise to
finite resonance widths Γn > 0. The other key feature is that
the eigenfunctions of Heff are nonorthogonal [2,4].
Their nonorthogonality is crucial in many applications; it
influences nuclear cross sections [5], features in decay laws
of quantum chaotic systems [6], and yields excess quantum
noise in open laser resonators [7]. For systems invariant
under time reversal, like open microwave cavities studied
below, the nonorthogonality is due to the complex wave
functions, yielding the so-called phase rigidity [8–10] and
mode complexness [11,12]. Nonorthogonal mode patterns
also appear in reverberant dissipative bodies [13], elastic
plates [14], optical microstructures [15] and lossy random
media [16].
Recently, such nonorthogonality was identified as the

root cause for enhanced sensitivity to perturbations in open
systems [17], see also Ref. [18]. Consider the parametric
motion of complex resonances under internal perturbations.
This can be modeled by a Hermitian term V added to Heff ,
so H0

eff ¼ Heff þ V. The complex energy shift δEn ¼ E0
n −

En of the nth resonance is then given by perturbation theory
for non-Hermitian operators [17,19], yielding in the leading
order δEn ¼ hLnjVjRni, where hLnj and jRni are the left
and right eigenfunctions ofHeff corresponding to En. They
form a biorthogonal system; in particular, hLnjRmi ¼ δnm

but Unm ≡ hLnjLmi ≠ δnm in general. U is known in
nuclear physics as the Bell-Steinberger nonorthogonality
matrix [2,5], see also Ref. [20]. Crucially, a nonzero width
shift δΓn ¼ −2ImδEn is induced solely by the off-diagonal
elements of U [17]

δΓn ¼ i
X
m

ðUnmVmn − VnmUmnÞ; ð1Þ

where Vnm ¼ hRnjVjRmi ¼ V�
mn. It vanishes only if the

resonance states were orthogonal (all Um≠n ¼ 0).
Note that the nonorthogonality measures studied in

Refs. [7–12] are related to the diagonal elements Unn.
Those and the width shift contain complementary infor-
mation on nonorthogonality. In particular, the off-diagonal
elements Unm are parametrically stronger for weakly open
systems, when the widths are small compared to the level
spacing Δ (Γ ≪ Δ): then, Un≠m ∼ ðΓ=ΔÞ [17], whereas
Unn − 1 is of the order of ðΓ=ΔÞ2 [12]. This leads to a
higher sensitivity of δΓn to nonorthogonality effects.
In this Letter, we report the first experimental study of

the width shift statistics for fully chaotic systems using
microwave cavities of different kinds. We consider both
local and global perturbations and also investigate whether
a different behavior occurs in the cases of scalar and
vectorial fields.
Global versus local perturbations.—We consider only

weakly open systems with time-reversal symmetry and
model them by random matrix theory [21,22]. The energy
levels are then induced by the eigenvalues of a random
matrix drawn from the Gaussian orthogonal ensemble
(GOE). Those N levels are coupled through the anti-
Hermitian part of Heff to M equivalent open channels
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[1,2], characterized by the same coupling κ ≪ 1. In such a
regime, the resonance positions En are given by those
eigenvalues and reveal universal fluctuations on the local
scale of Δ ∼ ð1=NÞ in the limit N ≫ 1. The resulting
Gaussian statistics of the GOE eigenvectors (corresponding
to the wave functions of the closed system) yields the well-
known χ2M distribution

PMðγÞ ¼
1

2M=2ΓðM=2Þ γ
M=2−1e−γ=2 ð2Þ

for the rescaled resonance widths γn ¼ πΓn=ð2κΔÞ [2,3].
To describe local and global perturbations on an equal

footing, we follow Refs. [23,24] and represent the pertur-
bation term as V ¼ P

r
q¼1 αqjqihqj. Its rank r governs the

transition between the local (r small) and global (r ≫ 1)
case. One can interpret V as r point scatterers characterized
by the strength coefficients αq, where q corresponds to their
positions. For example, a single scatterer added to the
(closed) system induces an energy shift δEn ¼ hnjVjni ¼
αψ2

nðqÞ for the nth level, with ψnðqÞ ¼ hqjni being the
wave function component at point q. However, moving the
scatterer from point q to q0, which we did in our experiment
(see Fig. 1), results in the shift δEn ¼ αðψnðqÞ2 − ψnðq0Þ2Þ.
The latter is equivalent to a rank-2 perturbation with
V ¼ αðjqihqj − jq0ihq0jÞ [24]. Generally, the variance of

the energy shifts is given by varðδEnÞ ¼ ð2=N2ÞtrðV2Þ,
which sets up a scale for the parametric level dynamics
[25]. Importantly, the rescaled energy shifts (“level veloc-
ities”) ∼δEn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðδEnÞ

p
acquire universal fluctuations of a

distinct type in the case of local and global perturbations,
being given by a K0 distribution (for r ¼ 2) [26] and a
Gaussian distribution, respectively. A gradual transition
between the two occurs quickly as the perturbation rank r
grows [24].
In the same limit κ ≪ 1, Gaussian distributed wave

functions result in the following representation for the
rescaled width shifts (“width velocities”) [17]:

yn ≡ δΓn

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2varðδEnÞ

p ¼
ffiffiffiffiffi
γn

p
π

X
m≠n

zmvmΔ
En − Em

: ð3Þ

Here, real zm are normally distributed random variables
(stemming from coupling to the channels), whereas real
vm ¼ NhmjVjni=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðV2Þ

p
are the normalized matrix ele-

ments (m ≠ n) of the perturbation. These quantities are
statistically independent of En and γn, which is a result of
separating independent fluctuations in spectra and in wave
functions of weakly open chaotic systems.
To characterize the universal statistics of the width

velocities (3), we compute their probability distribution
PMðyÞ ¼ ΔhPN

n¼1 δðEnÞδðy − ynÞi (at the spectrum
center), where h� � �i denotes the ensemble average.
Making use of the convolution theorem, it can be cast as
follows [17]

PMðyÞ ¼
Z

∞

0

dγffiffiffi
γ

p PMðγÞϕ
�

yffiffiffi
γ

p
�
; ð4Þ

where the function ϕðyÞ is defined by

ϕðyÞ ¼
Z

∞

−∞

dω
2π

eiωy
�Y

m≠n
exp

�
−i

ωzmvm
πEm=Δ

��
: ð5Þ

For global perturbations, the quantities vm become
normally distributed random variables [17], making the
integration over fzm; vmg straightforward. It results in the
GOE average of certain spectral determinants, which was
also derived in Ref. [17], with the explicit form of ϕ being

ϕðglÞðyÞ ¼ 4þ y2

6ð1þ y2Þ5=2 : ð6Þ

When substituted into Eq. (4), it leads to the distribution of

the width velocities in the global case, PðglÞ
M ðyÞ.

For local perturbations, vm have more complicated
statistics. However, an exact result can be found in the
particular case of r equivalent scatterers (all jαqj ¼ α),
which is of interest here. To this end, we first treat vm ¼
ðN=

ffiffiffi
r

p Þð~ψm · ~ψnÞ as a scalar product of two r-dimensional
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FIG. 1 (color online). The experimental setup (left) for two
microwave cavities with one antenna (positioned at cross)
together with the parametric dependence (right) of the Weyl
normalized energies (plus) and widths (red vertical lines):
(a) Sinai stadium with a movable wall (R1 ¼ W ¼ 240 mm,
R2 ¼ 50 mm), L ranging from 1.5 to 70.5 mm in steps of 0.5 mm.
(b) Rectangular billiard (L ¼ 340 mm, W ¼ 240 mm) with 19
randomly placed scatterers (black dots) of radius rc ¼ 2.3 mm.
One additional scatterer (red open circle) with radius rp1 ¼
2.3 mm or rp2 ¼ 9.75 mm was moved along the line xs (green
arrow) in steps of δr ¼ 1 or 0.5 mm, respectively.
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vectors of the corresponding wave function components. It
has a natural parametrization vm ¼ ð ffiffiffiffiffi

ηn
p

=
ffiffiffi
r

p Þνm in terms
of the vector length j~ψnj ¼ ffiffiffiffiffi

ηn
p

and the projection νm. The
advantage of such a parametrization is that ν and η are
statistically independent [12], with a normal and χ2r dis-
tribution [cf. Eq. (2)], respectively. Then, a Gaussian
integration over fzm; νmg in Eq. (5) yields

ϕðlocÞ
r ðyÞ ¼

� ffiffiffi
r

p
ffiffiffi
η

p ϕðglÞ
� ffiffiffi

r
p

yffiffiffi
η

p
��

η

; ð7Þ

where ϕðglÞ is given by Eq. (6) and the remaining average
over η is left at the end [27]. Combination of Eqs. (4) and
(7) solves the problem exactly at arbitrary rank r.

Functional dependencies of ϕðlocÞ
r ðyÞ and ϕðglÞðyÞ are the

same in the tails and differ only in the bulk, but their
difference diminishes quickly as r grows. For small channel
numbers, the difference becomes even less noticeable for
the width velocity distribution PMðyÞ, e.g., see Fig. 2, due
to the additional integration in Eq. (4) over the widths.
Since the width distribution (2) tends to δðγ −MÞ as

M → ∞, one has PM≫1ðyÞ ¼ ð1= ffiffiffiffiffi
M

p ÞϕðlocÞ
r ðy= ffiffiffiffiffi

M
p Þ as

the limiting distribution of the width velocities in this case.
Hence, many-channel systems turn out to be more sensitive
to the impact of finite r than their few channel analogues.
We also mention the general power-law decay PMðyÞ ∝
jyj−3 of the distribution at jyj ≫ 1, which can be linked to
the linear level repulsion [17]. Such tails get exponentially
suppressed in systems with rigid spectra without spectral
fluctuations [12,28].
Scalar experiments.—To investigate the statistics of the

width velocity for scalar fields we use cylindrical (two-
dimensional) microwave cavities, where the z component

of the electric field corresponds to the quantum wave
function ψ and the wave number k2 to the energy E [29].
Their heights are 8 mm, leading to a cutoff frequency of
νcut ¼ 18.75 GHz and the frequency range used around
5 GHz (wavelength 6 cm). Figure 1 shows the three
different systems. The first one is a chaotic Sinai-stadium
billiard [see Fig. 1(a)], which we will denote as the global
perturbation. We used the range from the 50th to 100th
resonance for the width velocity distribution. The second
(third) system is a rectangular cavity with 19 scatterers,
where an additional scatterer with the same (a larger) radius
was moved [see Fig. 1(b) and Ref. [26] for further details],
being denoted by local 1 (local 2). Again we took
resonances from the 50th to 100th (85th) for the local 1
(2) case. All three systems are chaotic and in the ballistic
regime, showing no level crossings experimentally.
The complex energies of the isolated resonances have

been obtained by Lorentzian fitting. In all cases the
energies and widths are normalized to the mean level
spacing Δ by the Weyl formula En=Δ ¼ πAðνn=cÞ2þ
Pðνn=cÞ, where νn, A, and P are the eigenfrequency, area,
and circumference, respectively. In case of the global
perturbation, this unfolding also removes the global energy
shift due to the area change.
The parametric dependence of the complex resonances

for these systems is shown in Fig. 1. Blue crosses indicate
the resonance positions and the length of the red vertical
lines corresponds to their widths. A distinct difference in
the parametric level dynamics for the global and local
perturbations is already visible here. This is further
reflected in the level velocity distribution, which is a
Gaussian distribution (K0 distribution) in the global (local)
case; both cases have been experimentally studied in
Refs. [26,30]. Notably, such differences are much less
pronounced for the width changes, as already discussed.
Obtaining the normalized width shifts (3) from the

measured data requires two parameters: the antenna cou-
pling and the variance of δEn. Both can be fixed in advance.
The antenna coupling can be calculated by [31]

κ ¼ j1 − hS11iν;pj2
1 − jhS11iν;pj2

; ð8Þ

where S11 is the complex reflection amplitude and special
care has been taken to remove global phase shifts induced
by the antennas. The average h� � �iν;p was performed over
the whole investigated frequency range and for all param-
eters p, giving κ ¼ 0.180 (global), κ ¼ 0.065 (local 1),
and κ ¼ 0.098 (local 2). We also took into account the

absorption width ΓðwÞ
n due to the finite conductivity of the

metallic walls, but neglected its variations, since ΓðwÞ
n as a

function of the parameter induces much smaller changes
than those due to the coupled antennas. Note that we do not

assume that ΓðwÞ
n is the same for all resonances [11,32,33].
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FIG. 2 (color online). Distribution of the experimental normal-
ized width velocities y for three systems corresponding to Fig. 1:
global (triangle), local 1 (filled circle), and local 2 (empty circle).
The solid (dashed) curve stands for the theoretical prediction for
the global (local, r ¼ 2) perturbation with M ¼ 1. The lower
inset shows the behavior of ϕðglÞ and ϕðlocÞ

2 , see Eqs. (6) and (7).
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The experimental distributions of the width velocities are
presented in Fig. 2. After the normalization described
above, there is no free parameter when comparing with
the theoretical result (4), as M is fixed by the number of
attached antennas, i.e., M ¼ 1 here. In all cases, we find a
good agreement with the corresponding theory. However,
the amount of statistics is not sufficient to distinguish
between the global and local perturbations in the width
velocity distribution. At the only point where this would be
possible statistically (y close to 0), the experimental
approximation of neglecting effects induced by absorption
is no longer valid.
Vectorial electromagnetic cavities.—To support the

universality of width shift fluctuations in the
three-dimensional case of electromagnetic vector fields,
we present experimental results as well as numerical
simulations in a chaotic reverberation chamber (RC). We
emphasize for this case the dependence on the channel
number M through various types of losses induced in the
cavity either through antennas (experiments) or locally
distributed Ohmic dissipation at walls (numerical simula-
tions). The experiments were performed in a commercial
RC of the approximate volume 19 m3 that was made
chaotic by adding three metallic half spheres on the walls
[34] (inset of Fig. 3). The parametric variation corresponds
to the rotation of an asymmetric stirrer acting as a global
perturbation. The measurements were performed via either
one single dipole antenna connected in a wall (M ¼ 1) or
between the latter antenna and a monopole antenna
(M ¼ 2) placed inside the cavity far from all walls. The
mean quality factor was about 2500, corresponding to a
moderate average modal overlap of d ¼ hΓi=Δ≃ 0.4–0.5.
By applying the harmonic inversion [35], we extracted
around 70 resonance frequencies and their widths for each
of 128 (90) positions of the rotating stirrer at M ¼ 1
(M ¼ 2). The resulting distributions of the width velocities
are shown in Fig. 3, demonstrating a good agreement with
the theoretical predictions (4) and (6) in both cases [36].
Thus, the width shift distribution, theoretically obtained for
quantum chaotic systems, i.e., scalar fields, appears to be
valid also for vectorial electromagnetic fields.
It is difficult to investigate the role of higher channel

numbers experimentally, since the coupling of each antenna
would have to be reduced, leading to too small signal-to-
noise ratios for any practical extraction of the complex
resonances. Moreover, in such a case, all dissipative losses
would become of the same order as those induced by
antennas. Therefore, we performed numerical simulations
using a finite-element method and calculated the resonan-
ces of two different configurations of the chaotic RC
described in Refs. [34,37], where the coupling was mim-
icked by local absorption at the boundaries through Ohmic
dissipative square patches scattered over the walls. By
tuning the conductivity, size, and number of the patches, we
can control the quality factor and hence the effective

number of weak absorptive channels, which can be
estimated as M ¼ 2hΓi2=varðΓÞ [38]. With the coupling
strength given by κ ≃ πd=ð2MÞ, we obtained M ¼ 10,
d ¼ 0.34, and κ10 ¼ 0.05 in one configuration investigated
and M ¼ 35, d ¼ 0.51, and κ35 ¼ 0.024 in the other. For
both configurations, the width velocity distributions are
presented in Fig. 3, showing an excellent agreement with
the theoretical predictions.
In conclusion, we experimentally verified the theoretical

results for the width shift distribution [17] for global
perturbations for scalar as well as for electromagnetic
vector fields, supporting the universality of width shift
statistics in weakly open chaotic systems. Additionally, we
extended the theoretical approach to arbitrary rank pertur-
bation, which was also found to be in good agreement with
our experimental findings.
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