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Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an
intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-
dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically
polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic
effect (∝ I3=2) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse.
This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of
the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing
one to probe and control S- andD-wave channels of the two-electron continuum. We show that the back-to-
back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that
occurs only for an elliptically polarized, few-cycle attosecond pulse.
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The quantum dynamics of two-electron atomic systems
interacting with electromagnetic fields is a fundamental
problem. It is well known that electron correlation underlies
the fundamental process of single-photon double ionization
of He [1]. Owing to recent advances in producing extreme
ultraviolet (XUV) pulses by means of harmonic generation
[2] or free-electron lasers [3–6], the nonlinear process of
two-photon double ionization of He has been observed.
The key role played by electron correlation in two-photon
double ionization of He has subsequently been extensively
investigated (see, e.g., Refs. [7–23]). All these investiga-
tions concern the case of linearly polarized XUV pulses.
Use of elliptically polarized light opens the possibility of

investigating effects and target properties that are not
accessible with linearly polarized pulses. For example,
investigations of atomic and molecular ionization by
circularly and/or elliptically polarized ultrashort pulses
have revealed “counterintuitive angular shifts” in ionized
electron angular distributions [24] (explained subsequently
as due to a dynamical phase shift [25]), imprints of target
orbital structures on photoelectron angular distributions
[26,27], and the ability of a circularly polarized pulse to
serve as an attoclock for timing strong field and attosecond
ionization processes [28]. In these works for atoms the
three-dimensional time-dependent Schrödinger equation
(TDSE) is solved using the single-active-electron approxi-
mation. General formulations for single ionization of an
atom [25] and double ionization of He [29] by an arbitrarily
polarized, few-cycle XUV pulse using perturbation theory
(PT) have been validated numerically only for the case
of a linearly polarized pulse [29–32] owing to its axial

symmetry, which reduces the numerical effort. None of
these many prior numerical investigations has addressed
the challenging six-dimensional problem of a two-electron
system interacting with an arbitrarily polarized XUV pulse.
In this Letter we study double photoionization (DPI) of

He by an intense, elliptically polarized, few-cycle atto-
second XUV pulse. Our focus is the dependence of the two-
electron angular distributions on the carrier-envelope phase
(CEP) and the helicity of the pulse both by a PT analysis
and by solving ab initio the six-dimensional TDSE for He.
Owing to the large bandwidth of the few-cycle pulse, our
numerical results reveal a new type of CEP-sensitive
polarization asymmetry that is normally absent in single
photon double ionization of He. The asymmetry is present
in the two-electron angular distributions under a change of
the rotation direction of the polarization of the attosecond
pulse. The different angular distributions for opposite
helicities of the pulse is our main finding, and we refer
to this effect as “nonlinear dichroism” (ND). Its physical
origin, within the framework of PT, is the interference
of first-order (A1) and second-order (A2) transition ampli-
tudes [cf. Fig. 1(a)]. In the absence of electron correlation,
A1 ¼ 0 and ND vanishes. Moreover, ND probes electron
correlation on its natural time scale since ND vanishes also
for long pulses.
For the pulse parameters employed here, PT in the pulse

amplitude is valid and can be employed to both guide
numerical calculations and interpret their results. A key fact
is that experiments with elliptically polarized pulses pro-
vide information that is in principle inaccessible to experi-
ments with linearly polarized pulses. We parameterize the
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pulse polarization vector, e, as e ¼ ðϵ̂þ iηζ̂Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η2
p

,
where ϵ̂ and ζ̂ ¼ k̂ × ϵ̂ indicate respectively the major and
minor axes of the polarization ellipse, k̂ is the pulse
propagation direction, and η is the ellipticity (−1 ≤ η ≤
þ1). [Note that the circular polarization degree, ξ, of the
pulse is ξ ¼ 2η=ð1þ η2Þ.] Defining the triply differential
probability (TDP) for DPI by d3W=dEdΩp̂1

dΩp̂2
≡

Wðp1;p2; eÞ, where p1;2 are the electron momenta and
E ¼ ðp2

1 þ p2
2Þ=2, dynamical and phase information on the

DPI process for a pulse with ξ ≠ 0 can be gained by
measuring the difference of the TDPs for pulses with
the electric field F rotating in opposite directions, i.e., the
dichroic effect [33]. We refer to this difference as the
dichroism ΔWξ,

ΔWξ ≡Wðp1;p2; eÞ −Wðp1;p2; e�Þ: ð1Þ
We describe the interaction of an atom in its 1Se ground

state with a short pulse electric field FðtÞ ¼
F0ðtÞRe½ee−iðωtþϕÞ� having CEP ϕ, carrier frequency ω,
and temporal envelope function F0ðtÞ. We neglect spin-
orbit interactions, so that both amplitudes A1 and A2 are
scalars independent of the quantization axis. We adopt the
same PT assumptions as in Refs. [25,29]. Under these
assumptions (see the Supplemental Material [34] for a
discussion), the TDP equals

Wðp1;p2; eÞ ≈ C½jA1j2 þ 2ReðA�
1A2Þ�; ð2Þ

where C is a normalization factor. The validity of Eq. (2) is
determined by comparing with TDSE calculations.
Using Eq. (2) in Eq. (1), we see that ΔWξ is comprised

of two very different parts. One of them, ΔWD1, results
from the interference of different terms in the first-order
amplitude A1; it is the analog of conventional circular

dichroism in single photon double ionization of
He [1,35–41] and is linear in the pulse intensity I. The
second part, ΔWD12, is due to interference of the first- and
second-order amplitudes, as occurs in single electron short-
pulse ionization [25]. It is a nonlinear dichroic effect since
ΔWD12 ∝ I3=2. By choosing a geometry in which ΔWD1

vanishes, one can thus measure the ND term ΔWD12

directly. Such a geometry is back-to-back (BTB) emission
of the two electrons [1]; cf. Fig. 1(b). For other geometries,
PT indicates that the linear dichroism term ΔWD1 is
generally larger than ΔWD12. Note that ΔWD12 vanishes
upon averaging over the CEP ϕ; it also vanishes whenever
the first-order amplitude vanishes due to selection rules. In
the latter case ND originates from the interference between
different terms in the second-order amplitude. This higher-
order dichroism, ΔWD2 ∝ I2, has the same general proper-
ties as ΔWD12, and its role is elucidated by our numerical
calculations below.
The first-order PT amplitude, A1, for single-photon DPI

to the continuum 1Po-state of the ionized electron pair with
energy E can be parameterized as in Ref. [29]:

A1 ¼ e−iϕ½fgðρÞðpþ · eÞ þ fuðρÞðp− · eÞ�; ð3Þ
where ρ≡ ðp1; p2; θÞ, θ is the mutual angle between the
electron momenta, and p� ≡ ðp̂1 � p̂2Þ=2 (cf. [34] for
discussion). The Pauli exclusion principle and parity
conservation require the functions fg;u to be symmetric
and antisymmetric, i.e., fgðp2; p1; θÞ ¼ fgðp1; p2; θÞ and
fuðp2; p1; θÞ ¼ −fuðp1; p2; θÞ. Note that A1 vanishes for
equal energy sharing (p1 ¼ p2) in the BTB geometry
(p̂1 ¼ −p̂2) since in that case both fuðρÞ and pþ vanish.
For an “in-plane geometry” (i.e., p1, p2, and e all lie in

the polarization plane), the first-order circular dichroism,
ΔWD1, depends only on the degree of circular polarization
ξ and is independent of both the CEP and the orientation
(i.e., φ) of the polarization ellipse with respect to the
electron momenta, as follows from the explicit expression
for ΔWD1 that one obtains using Eq. (3):

1

C
ΔWD1 ¼ jA1ðeÞj2 − jA1ðe�Þj2 ¼ �ξ sin θIm½f�gfu�: ð4Þ

Here� is the sign of the triple product ðk̂ · ½p̂1 × p̂2�Þ. Note
that ΔWD1 vanishes for the BTB geometry (θ ¼ π).
For a sufficiently short pulse, one- and two-photon

transitions (described by the first- and second-order ampli-
tudes, A1 and A2) may each doubly ionize an initial 1Se

state leading to two-electron continuum states with the
same energy E [cf. Fig. 1(a) for the three-cycle case]. (Note
that A2 includes both two-photon absorption and absorp-
tion and emission involving two photons.) By electric
dipole selection rules, A1 leads to electron pairs in 1Po

states, while A2 leads to 1Se and 1De states. In contrast to
ΔWD1, the ND part of Eq. (1), ΔWD12 [obtained within PT
for unequal energy sharing and the BTB in-plane geometry,

(a)

(b)

FIG. 1 (color online). (a) Sketch of two-electron energy spectra
produced when He absorbs one or two photons from a single ten-
or three-cycle pulse with ω ¼ 65 eV. For the three-cycle pulse,
the one- and two-photon perturbation theory amplitudes (A1 and
A2) overlap at ≈4 eV above the DPI threshold at 79 eVowing to
the large pulse bandwidth. (b) The in-plane back-to-back (BTB)
geometry for DPI of He with electron momenta p1 and p2 in the
polarization plane orthogonal to the laser propagation direction k̂.
The major and minor axes of the polarization ellipse are defined
by the unit vectors ϵ̂ and ζ̂ . The BTB angle, φ, is the angle
between p̂1 and ϵ̂.
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cf. Fig. 1(b)], depends not only on ξ but also on the CEP,
the orientation φ of the polarization ellipse, and on the
product ξl, where l ¼ ð1 − η2Þ=ð1þ η2Þ is the degree of
linear polarization. As explained in the Supplemental
Material [34], ΔWD12 equals

ΔWD12 ¼ Cξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðlþ 1Þ
p

sinφImff�u½e−iϕð2hl − h−

× ðl cos 2φþ 1ÞÞ
þ eiϕð2h0 þ h0−ðl cos 2φþ 1ÞÞ�g; ð5Þ

where h, h−, h0, and h0− are CEP- and η-independent
dynamical parameters describing the amplitude A2 [34].
Equation (5) shows that the ND term ΔWD12 involves the
product of the dynamical parameter f�u of A1 [cf. Eq. (3)]
and the dynamical h parameters [34] characterizing A2;
therefore ΔWD12 vanishes unless the pulse bandwidth is
sufficiently large that these parameters of A1 and A2 are
nonzero at the same energy.
Unlike for linearly polarized pulses, for elliptically

polarized pulses the angular momentum projection M is
not conserved. This results in an “M-mixing problem”
[42,43] that we treat using ideas introduced in Ref. [43]
and developed further in Refs. [24,26–28,44]. We solve
the six-dimensional TDSE using a finite-element dis-
crete-variable representation and the real-space product
algorithm [45] together with Wigner rotation transforma-
tions at each time step to the frame of the instantaneous
electric field [24,26–28,42–44]. We calculate the TDP,
Wðp1;p2; eÞ, for ionization of two electrons that share the
energy E ¼ E1 þ E2 above the DPI threshold, by projec-
ting the continuum part ΦCðr1; r2;ϕ; eÞ of the two-electron
wave packet (at a time ≈20 a:u: after the pulse, ensuring

convergence) onto field-free states, Ψð−Þ
p1;p2

ðr1; r2Þ, which
are uncorrelated symmetrized products of two Coulomb
functions for Z ¼ 2 [29,46],

Wðp1;p2; eÞ ¼ jhΨð−Þ
p1;p2

ðr1; r2ÞjΦCðr1; r2;ϕ; eÞij2: ð6Þ
Our calculations include 199 partial waves for four values
of L: 0 ≤ L ≤ 3, so that effects of the small third-order PT
amplitude are included. We assume a pulse envelope
F0ðtÞ ¼ F0 cos2ðπt=TÞ with −T=2 ≤ t ≤ T=2, where T ≡
nð2π=ωÞ is the total pulse duration for n ¼ 3 optical cycles.
The temporal full width at half maximum of the pulse
intensity profile is 0.364T ¼ 1.1 cycles, which is compa-
rable to those of the linearly polarized, single-cycle pulses
achieved experimentally [47,48]. The spectral width Δω≃
1.44ω=n [18] of the pulse intensity profile is 31.2 eV for
ω ¼ 65 eV (T ¼ 190.9 as) and our peak pulse intensity
is 2 PW=cm2. Significant interference, for ω ¼ 65 eV,
occurs at energies E ≈ 4 eV [29] above the DPI threshold
energy (≈79 eV) at which the PT amplitudes A1 and A2 are
comparable [cf. Fig. 1(a)].
We present results of our numerical calculations for the

BTB geometry [Fig. 1(b)] since the first-order circular

dichroism ΔWD1 vanishes [cf. Eq. (4)]. An additional
virtue of the BTB scheme is that it guarantees a high
accuracy of our numerical method in the XUV regime (with
convergence of our results for a relatively low number of
electron angular momenta) since the torque along the BTB
axis is always zero [49]. All but one of the results in
Figs. 2–4 are given for unequal energy sharing.
The strong CEP dependence of the TDPs Wðp̂; eÞ≡

Wðp1;p2; eÞjp̂2¼−p̂1
[cf. Eq. (6)] for ξ ¼ �0.8 are shown in

Figs. 2(a)–2(d) for four CEPs. For each CEP, comparing the
TDPs for ξ → −ξ (or equivalently, e → e�), one sees that
the angular distributions, Wðp̂; eÞ and Wðp̂; e�Þ are mirror
images of one another, which is the dichroic effect. For a
fixed CEP and ξ, the angular distributions are highly
asymmetric under the transformation φ → φþ π (or
p̂ → −p̂). In contrast, Fig. 2(c) shows the L ¼ 1 part of
the TDP, WðL¼1Þðp̂; eÞ, which we find is CEP independent
and symmetric under the transformation φ → φþ π. This
is consistent with first-order PT, in which WðL¼1Þ ∝ jA1j2
[cf. Eq. (3)]. In the PT limit in whichWðp̂;eÞ∝ jA1þA2j2,
the difference Wðp̂; eÞ −Wð−p̂; eÞ thus measures directly
the cross term 2ReðA�

1A2Þ, as in the case of DPI of He by a
linearly polarized, few-cycle pulse [29].
The angular dependence of the dichroism ΔWξ (1) is

plotted in Figs. 3(a) and 3(b) for two CEPs; its dependence
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FIG. 2 (color online). The TDP Wðp̂; eÞ [Eq. (6)] (in units of
10−5 a:u:) vs. φ [cf. Fig. 1(b)] for DPI of He by a three-cycle
XUV pulse (with ω ¼ 65 eV, I ¼ 2 PW=cm2, T ¼ 190.9 as, a
cos2 envelope, and an ellipticity η ¼ �0.5 or ξ ¼ �0.8) for four
CEPs: (a) ϕ ¼ 0, (b) ϕ ¼ π=3, (c) ϕ ¼ π=2, (d) ϕ ¼ 5π=6. All
results are for the back-to-back geometry and unequal energy
sharing (UES): E1 ¼ 0.7 eV and E2 ¼ 3.3 eV. In (c) we give for
comparison WðL¼1Þðp; eÞ; see text for discussion.
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on ellipticity and intensity for ϕ ¼ π=2 is shown in
Figs. 3(c) and 3(d). One sees that ΔWξ, which includes
both the circular dichroism term ΔWD1 [Eq. (4)] and
higher-order dichroism terms [e.g., ΔWD12 [Eq. (5)] and
ΔWD2], is highly sensitive to the CEP, decreases with
decreasing ellipticity, and scales approximately as I3=2 with
intensity, with deviations originating from higher order
terms. To estimate the contributions of each term, we plot in

Figs. 3(a) and 3(b) ΔWðLÞ
ξ for the odd and even L

components of the two-electron continuum wave packet,

where ΔWðL¼1Þ
ξ ≈ ΔWD1, ΔW

ðL¼0;2Þ
ξ ¼ ΔWD2, and thus

ΔWD12 ≈ ΔWξ − ΔWðL¼1Þ
ξ − ΔWðL¼0;2Þ

ξ . We see that

ΔWðL¼1Þ
ξ is very small, consistent with first-order PT in

which ΔWD1 is zero in the BTB configuration. The

nonzero ΔWðL¼1Þ
ξ is CEP-independent, as expected for

interference between first- and third-order PT amplitudes.
The significance of the second-order dichroism ΔWD2

term depends on the CEP. For ϕ ¼ π=2 [cf. Fig. 3(b)],
ΔWD2 ≪ ΔWD12 so that ΔWξ ≈ ΔWD12 at all angles.
However, for a CEP ϕ ¼ 0 [cf. Fig. 3(a)] the magnitude of
ΔWD2 is comparable to that of ΔWD12, so that
ΔWξ ≈ ΔWD12 þ ΔWD2. Thus for some values of φ,
the second-order part of the TDP (∝ jA2j2) must be
included in the PT analysis. Our results in Fig. 3 confirm
the PT prediction that ΔWD12 ∼ sinφ [cf. Eq. (5)], i.e.,
ΔWD12 ¼ 0 when electrons are emitted along the major

axis of the pulse polarization ellipse. Figures 3(a) and 3(b)
show also that ΔWD2 ¼ 0 for φ ¼ 0; π=2; π; 3π=2, indicat-
ing that ΔWD2 ∝ sinφ cosφ, as predicted by PT [34].
In Fig. 4(a) we show that the relative dichroism,

ΔWξ=½Wðp̂; eÞ þWðp̂; e�Þ�, is sensitive to the CEP and,
for nearly all CEPs, is substantial. Its suppression for ϕ ¼
π=3 is consistent with the similarity of the TDPs for
ξ ¼ �0.8 shown in Fig. 2(b); its large values near
φ ¼ π stem from the small values of the TDPs there. In
Figs. 4(b)–4(d), respectively, we see that it decreases as one
approaches equal energy sharing and as either the ellipticity
or the intensity decrease.
In summary, by solving ab initio the six-dimensional

two-electron TDSE for DPI of He by an elliptically
polarized, intense few-cycle attosecond pulse, we have
analyzed the dependence of the TDP on the pulse polari-
zation and CEP. For such few-cycle pulses, a new type of
nonlinear (in the field intensity) dichroic effect in the two-
electron angular distributions [Eq. (1)] is predicted that can
serve as a temporal measure of electron correlations (as it
vanishes for long pulses). Our essentially exact numerical
results show that, for pulse intensities that may be realized
in the near future, PT can be successfully used to predict
and explain characteristic features of this new polarization
effect, which originates primarily from interference of the
first- and second-order PT amplitudes. Our results show
that ND is highly sensitive to the pulse CEP. Accordingly,
by tuning the CEP one can vary the relative contributions to
the total ND of different PT amplitudes, thereby allowing
one to determine their relative magnitudes. In the future, ND
may be observed experimentally using reaction microscope

ΔW
ξ [

10
-6
 (

a.
u

.)
]

0 60 120 180 240 300 360

-4

-2

0

2

4
ΔWξ
ΔWξ(L=1)
ΔWξ(L=0,2)
ΔWD12

UES
BTB
φ=0
(a)

ΔW
ξ [

10
-6
 (

a.
u

.)
]

0 60 120 180 240 300 360

-4

-2

0

2

4

ΔWξ
ΔWξ(L=1)
ΔWξ(L=0,2)
ΔWD12

UES
BTB
φ=π/2

(b)

BTB angle ϕ (deg)

ΔW
ξ[

10
-6
 (

a.
u

.)
]

0 60 120 180 240 300 360

-4

-2

0

2

4

ξ=1
ξ=0.8
ξ=0.55
ξ=0.2

UES
BTB
φ=π/2

(c)

BTB angle ϕ (deg)

ΔW
ξ[

10
-6
 (

a.
u

.)
]

0 60 120 180 240 300 360
-3

-2

-1

0

1

2

3

1.0 PW/cm2

1.5 PW/cm2

2.0 PW/cm2

UES
BTB
φ=π/2

(d)

FIG. 3 (color online). Angular dependence of the dichroism,
ΔWξ, for two CEPs: (a) ϕ ¼ 0, and (b) π=2. The contributions

of ΔWðL¼1Þ
ξ ≈ ΔWD1, ΔW
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ξ ¼ ΔWD2, and ΔWD12 are also

shown (see text for discussion). (c) Ellipticity dependence of
ΔWξ. (d) Pulse intensity-dependence of ΔWξ; results are
scaled by ðI=IrÞ3=2, where Ir ¼ 2 PW=cm2. Unless otherwise
specified, ϕ ¼ π=2, ξ ¼ 0.8, I ¼ 2 PW=cm2, E1 ¼ 0.7 eV, and
E2 ¼ 3.3 eV.
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FIG. 4 (color online). Angular dependence of the relative
dichroism (RD), ΔWξ=½Wðp̂; eÞ þWðp̂; e�Þ�, for the BTB
geometry [cf. Fig. 1(b)]. Unless otherwise specified, ϕ ¼ π=2,
ξ ¼ 0.8, I ¼ 2 PW=cm2, E1 ¼ 0.7 eV, and E2 ¼ 3.3 eV. The
panels show its sensitivity to (a) the CEP, (b) the energy sharing,
(c) the ellipticity, and (d) the pulse intensity.
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techniques [50] with the detection of electrons ionized in
opposite directions in the pulse polarization plane for two
helicities:�ξ.We note that linear dichroic effects in He have
recently been employed to determine the polarization of an
XUV free-electron laser beam [51]. The ND predicted here,
owing to its dependence on the large bandwidth of atto-
second pulses and its sensitivity to the CEP, may be valuable
for characterizing these much shorter pulses.
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