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With appropriate interpolating currents the mass spectrum of the 0−− oddball is obtained in the framework
of QCD sum rules. We find there are two stable oddballs with masses of 3.81� 0.12 and 4.33� 0.13 GeV,
and analyze their possible production and decay modes in experiments. Noticing that these 0−− oddballs
with an unconventional quantum number are attainable in BESIII, BELLEII, PANDA, Super-B, and LHCb
experiments, we believe the long searched for elusive glueball could be measured shortly.
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Quantum chromodynamics (QCD) is the underlying
theory of hadronic interaction. In the high energy regime,
it has been tested up to the 1% level due to asymptotic
freedom [1]. However, the nonperturbative aspect related to
the hadron spectrum is difficult to be calculated from first
principles because of confinement [2]. A unique attempt in
understanding the nonperturbative aspect of QCD is to
study the glueball (gg; ggg;…), where the gauge field plays
a more important dynamical role than in ordinary hadrons.
This has created much interest in theory and experiment for
quite a long time.
In the literature, many theoretical investigations on

glueball were made through various techniques, including
lattice QCD [2–4], the flux tube model [5], the MIT bag
model [6,7], the Coulomb gauge model [8], and QCD sum
rules (QCDSR) [9–17]. Of these techniques, the model
independent QCDSR, developed more than 30 years ago by
Shifman, Vainshtein, and Zakharov (SVZ) [9], has some
peculiar advantages in the study of hadron phenomenology.
Its starting point in evaluating the properties of the ground-
state hadron is to construct the current, which possesses
the foremost information about the concerned hadron, like
quantum numbers and the constituent quark or gluon. By
using the current, one can then construct the two-point
correlation function, which has two representations: the
QCD representation and the phenomenological represen-
tation. Equating these two representations, the QCDSR will
be formally established.
In the framework of QCDSR, the two-gluon glueballs

with quantum numbers of 0þþ [11–13] and 0−þ [13,14]
have been studied extensively in the literature. Note that
these glueballs were also constructed and investigated
through trigluons [15–17], which is enlightening for the
research in this work.
Although the glueball has been searched for for many

years in experiments, so far there has been no definite
conclusion about it, mainly due to the following three
reasons: the mixing effect between glueballs and quark
states, the lack of the glueball production mechanism, and
the lack of the necessary knowledge about glueball decay

properties. Of these difficulties, from the experimental
point of view, the most outstanding obstacle is how to
isolate the glueball from the mixed quarkonium states (qq̄).
Fortunately, there is a class of glueballs, the unconventional
glueballs, which with quantum numbers unaccessible by
quark-antiquark bound states can avoid such problems. The
quantum numbers of those glueballs include JPC ¼ 0−−,
0þ−, 1−þ, 2þ−, 3−þ, and so on. Note, according to C-parity
conservation, glueballs with negative C parity cannot be
reached by two gluons, but have to be composed of at least
three gluons. In the literature the term oddball has been
used to describe 3 gluon glueballs having unconventional
quantum numbers as well as 3 gluon glueballs with odd J,
P, C having conventional quantum numbers. To unify and
avoid confusion, we propose using the term oddball to
simply refer to glueballs with 3 gluons.
Among oddballs, special attention ought be paid to the

0−− ones, since they are relatively light and their quantum
number enables their production in the decays of vector
quarkonium or quarkoniumlike states easier. The aim of this
Letter is to evaluate the mass spectrum of the 0−− oddball
and analyze the feasibility of finding it in experiment.
In order to calculate the mass spectrum of the 0−− oddball,

one has to construct the appropriate current for it. In practice,
a number of currents satisfy the unconventional quantum
number. However, after imposing the constraints of gauge
invariance, Lorentz invariance, and SUcð3Þ symmetry, only
a limited number of currents remain. They are

jA0−−ðxÞ ¼ g3sdabc½gtαβ ~Ga
μνðxÞ�½∂α∂βGb

νρðxÞ�½Gc
ρμðxÞ�; ð1Þ

jB0−−ðxÞ ¼ g3sdabc½gtαβGa
μνðxÞ�½∂α∂β

~Gb
νρðxÞ�½Gc

ρμðxÞ�; ð2Þ

jC0−−ðxÞ ¼ g3sdabc½gtαβGa
μνðxÞ�½∂α∂βGb

νρðxÞ�½ ~Gc
ρμðxÞ�; ð3Þ

jD0−−ðxÞ ¼ g3sdabc½gtαβ ~Ga
μνðxÞ�½∂α∂β

~Gb
νρðxÞ�½ ~Gc

ρμðxÞ�; ð4Þ

where a, b, and c are color indices, μ, ν, ρ, α, and β are
Lorentz indices, dabc stands for the totally symmetric

PRL 113, 221601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

28 NOVEMBER 2014

0031-9007=14=113(22)=221601(5) 221601-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.221601
http://dx.doi.org/10.1103/PhysRevLett.113.221601
http://dx.doi.org/10.1103/PhysRevLett.113.221601
http://dx.doi.org/10.1103/PhysRevLett.113.221601


SUcð3Þ structure constant, gtαβ ¼ gαβ − ∂α∂β=∂2, Ga
μν

denotes the gluon field strength tensor, and ~Ga
μν is the dual

gluon field strength tensor defined as ~Ga
μν ¼ 1

2
ϵμνκτGa

κτ.
Hereafter, for simplicity the four 0−− currents in
Eqs. (1)–(4) will be referred as case A to D, respectively,
and they will be all taken into account in our analysis.
With the currents of (1)–(4), the two-point correlation

functions can be readily established, i.e.,

Πðq2Þ ¼ i
Z

d4xeiq·xh0jTfj0−−ðxÞ; j0−−ð0Þgj0i; ð5Þ

where j0i denotes the physical vacuum. The QCD side of
the correlation function can be obtained through the
operator product expansion (OPE) and reads as

ΠQCDðQ2Þ ¼ a0Q12 ln
Q2

μ2
þ b0Q8hαsG2i

þ
�
c0 þ c1 ln

Q2

μ2

�
Q6hgsG3i þ d0Q4hαsG2i2:

ð6Þ

Here, hαsG2i, hgsG3i, and hαsG2i2 represent two-gluon,
three-gluon, and four-gluon condensates, respectively; μ is
the renormalization scale; and Q2 ≡ −q2 > 0. For simplic-
ity, we use a0, b0, c0, c1, and d0 to represent the Wilson
coefficients of operators with different dimensions in
Eq. (6). After a lengthy calculation, the Wilson coefficients
are obtained as follows:

ai0 ¼
487α3s

143× 26 × 33π
; bi0 ¼ −

5π

36
α2s ; cA0 ¼ −

205

12
πα3s ;

cA1 ¼ −
775

144
πα3s ; cB0 ¼ −

2065

48
πα3s ; cB1 ¼ −

1075

96
πα3s ;

cC0 ¼ 2275

72
πα3s ; cC1 ¼ 2125

144
πα3s ; cD0 ¼ −

1045

144
πα3s ;

cD1 ¼ −
25

32
πα3s ; dj0 ¼ 0; dD0 ¼ −

5

9
π3αs; ð7Þ

where the superscript i runs from A to D and j for A to C,
with A, B, C, and D corresponding to the four currents in
Eqs. (1)–(4), respectively. Notice that there are symmetries
within Wilson coefficients ai0, b

i
0, and d

j
0. Since the position

and the number of ~G in Eqs. (1)–(4) do not influence the
perturbative and hαsG2i contributions, ai0ðbi0Þ are identical
for all cases, whereas they influence the hgsG3i term, and,
hence, ci0ðci1Þ are different. Moreover, the hαsG2i2 term
involves no loop contribution, dj0 are governed by the
number of ~G, so they are equal.
On the phenomenological side, adopting the pole plus

continuum parametrization of the hadronic spectral density,
the imaginary part of the correlation function can be
saturated as

1

π
ImΠpheðsÞ ¼ f2GM

12
0−−δðs −M2

0−−Þ þ ρðsÞθðs − s0Þ: ð8Þ

Here, ρðsÞ is the spectral function of excited states and
continuum states above the continuum threshold

ffiffiffiffiffi
s0

p
, M0−−

represents the mass of the 0−− oddball, fG stands for the
coupling parameter defined by the following matrix element:

h0jj0−−ð0ÞjGi ¼ fGM6
0−− : ð9Þ

Employing the dispersion relation on both QCD and
phenomenological sides, i.e.,

ΠðQ2Þ ¼ 1

π

Z
∞

0

ds
ImΠðsÞ
sþQ2

þ
�
Πð0Þ −Q2Π0ð0Þ

þ 1

2
Q4Π00ð0Þ − 1

6
Q6Π000ð0Þ

�
; ð10Þ

where Πð0Þ, Π0ð0Þ, Π00ð0Þ, and Π000ð0Þ are constants
relevant to the correlation function at the origin, then
one can establish a connection between QCD calculation
(the QCD side) and the glueball properties (the phenom-
enological side),

1

π

Z
∞

0

ImΠQCDðsÞ
sþQ2

ds¼ f2GM
12
0−−

M2
0−− þQ2

þ
Z

∞

s0

ρðsÞθðs− s0Þ
sþQ2

ds:

ð11Þ
In order to take control of the contributions from higher

order condensates in the OPE and the contributions from
higher excited and continuum states on the phenomeno-
logical side, an effective and prevailing way is to perform
the Borel transformation simultaneously on both sides of
the QCDSR. That is

B̂τ ≡ lim
Q2→∞;n→∞
ðQ2=nÞ¼ð1=τÞ

ð−Q2Þn
ðn − 1Þ!

�
d

dQ2

�
n
; ð12Þ

where a parameter τ, usually called the Borel parameter, is
introduced. After performing the Borel transformation,
Eq. (11) then turns into

1

π

Z
∞

0

e−sτImΠQCDðsÞds¼f2GM
12
0−−e

−τM2
0−−þ

Z
∞

s0

ρðsÞe−sτds:

ð13Þ

Taking the quark-hadron duality approximation

1

π

Z
∞

s0

e−sτImΠQCDðsÞds≃
Z

∞

s0

ρðsÞe−sτds; ð14Þ

the moments L0 and L1 are achieved,

L0ðτ; s0Þ ¼
1

π

Z
s0

0

e−sτImΠQCDðsÞds; ð15Þ
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L1ðτ; s0Þ ¼
1

π

Z
s0

0

se−sτImΠQCDðsÞds; ð16Þ

where L1 is obtained via L1ðτ; s0Þ ¼ −∂L0ðτ; s0Þ=∂τ. Then
the 0−− oddball mass is obtained in the form of the ratio of
L1ðτ; s0Þ to L0ðτ; s0Þ, i.e.,

Mi
0−−ðτ; s0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ðτ; s0Þ
L0ðτ; s0Þ

s
ð17Þ

with i for cases A;B;C, and D.
To evaluate the oddball mass numerically, the following

inputs are adopted [17]:

hαsG2i ¼ 0.06 GeV4; hgsG3i ¼ ð0.27 GeV2ÞhαsG2i;

ΛMS ¼ 300 MeV; αs ¼
−4π

11 lnðτΛ2

MS
Þ ; ð18Þ

where the magnitude of the trigluon condensate, hgsG3i,
is obtained from the dilute gas instanton model due to the
lack of direct knowledge from experiment, while other
parameters are commonly used in the literature.
In the QCDSR calculation, the parameter τ and the

threshold s0 are free parameters, proceeding from some
requirements. Conventionally, two criteria are adopted in
determining the τ [9,10,18,19]. First, the convergence of
the OPE should be retained, that is, the disregarded power
corrections must be small. For this aim, one needs to
evaluate the relative weight of each term to the total on the
OPE side. Second, the pole contribution (PC) should
exceed that from the higher excited and continuum states.
Therefore, one needs to evaluate the relative pole contri-
bution over the total, the pole plus the higher excited and
continuum states (s0 → ∞), for various τ. In order to
properly eliminate the contribution from higher excited
and continuum states, the pole contribution is generally
required to be more than 50%. The two criteria can be
formulated as

ROPE
i ¼

R s0
0 e−sτImΠhgsG3iðsÞdsR s0
0 e−sτImΠQCDðsÞds ð19Þ

and

RPC
i ¼ L0ðτ; s0Þ

L0ðτ;∞Þ : ð20Þ

Here, i stands for cases A;B;C and D, and ImΠhgsG3iðsÞ is
the imaginary part of the contribution from hgsG3i. Note
that the numerator in ROPE

i depends only on ImΠhgsG3iðsÞ;
the hαsG2i and hαsG2i2 give no contribution.
To determine the characteristic value of

ffiffiffiffiffi
s0

p
, we carry

out a similar analysis as in Refs. [18,19]. Therein, one
needs to find out the proper value, which has an optimal
window for the mass curve of the interested hadron. Within

this window, the physical quantity, i.e., the mass of the 0−−

oddball, is independent of the Borel parameter τ as much as
possible. Through the above procedure one then obtains the
central value of

ffiffiffiffiffi
s0

p
. However, in practice, it is normally

acceptable to vary the
ffiffiffiffiffi
s0

p
by about 0.2 GeV in the

calculation of the QCDSR, which gives the lower and
upper bounds and hence the uncertainties of

ffiffiffiffiffi
s0

p
.

With above preparation we numerically evaluate the
mass spectrum of the 0−− oddball. For case A, we show the

as0 4.90 GeV

s0 4.70 GeV

s0 4.50 GeV

0.25 0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0

GeV 2

R
A

O
P

E
&

R
A

P
C

b
s0 4.90 GeV

s0 4.70 GeV

s0 4.50 GeV

0.1 0.2 0.3 0.4 0.5 0.6
2.0

2.5

3.0

3.5

4.0

4.5

5.0

GeV 2

M
A

0
G

eV

FIG. 1 (color). (a) The ratios ROPE
A and RPC

A in case A as
functions of the Borel parameter τ for different values of

ffiffiffiffiffi
s0

p
,

where blue lines represent ROPE
A and red lines denote RPC

A . (b) The
mass MA

0−− as a function of the Borel parameter τ for different
values of

ffiffiffiffiffi
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p
, where the two vertical lines indicate the upper and

lower limits of the valid Borel window.
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FIG. 2 (color). The same caption as in Fig. 1, but for case B.
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ratios ROPE
A and RPC

A as functions of Borel parameter τ in
Fig. 1(a) with different values of

ffiffiffiffiffi
s0

p
, 4.50, 4.70, and

4.90 GeV. The dependency relations between oddball mass
MA

0−− and parameter τ are given in Fig. 1(b). Two vertical
lines in Fig. 1(b) indicate the upper and lower limits of the
valid Borel window for the central value of

ffiffiffiffiffi
s0

p
, where a

smooth section, the so-called stable plateau, in theMA
0−− − τ

curve exists, suggesting the mass of the possible oddball. A
similar situation for case B is shown in Figs. 2(a) and 2(b),
where the threshold parameters

ffiffiffiffiffi
s0

p ¼ 5.10, 5.30, and
5.50 GeV. The figure also exhibits a stable plateau in
the MB

0−− − τ curve, which implies another possible odd-
ball. The situations for case C and D are shown in Figs. (3)
and (4). We find that no matter what value the

ffiffiffiffiffi
s0

p
takes, no

optimal window for a stable plateau exists, where MC
0−− or

MD
0−− is nearly independent of the Borel parameter τ. That

means the current structures in Eqs. (3) and (4) do not
support the corresponding oddballs. Note in Fig. 4(b), the
upper limit of the Borel window is not shown, since it
exceeds the region of the τ axis. The exact measures of
the Borel windows in four cases are given in Table I with
various values of

ffiffiffiffiffi
s0

p
.

Our calculation shows that there possibly exist two 0−−

oddballs, corresponding to the currents (1) and (2), respec-
tively. That is

MA
0−− ¼ 3.81� 0.12 GeV; ð21Þ

and

MB
0−− ¼ 4.33� 0.13 GeV; ð22Þ

where the errors stem from the uncertainties of the Borel
parameter τ and threshold parameter

ffiffiffiffiffi
s0

p
. From Figs. 1(b)

and 2(b), it is obvious that MA
0−− and MB

0−− are are quite
stable and insensitive to the variation of τ and

ffiffiffiffiffi
s0

p
within

the proper windows of τ. This is the main reason why our
calculation yields small errors, similar to Refs. [12,13],
for instance. Hereafter, we refer to these two oddballs as
G0−−ð3810Þ and G0−−ð4330Þ in discussion.
The mass difference of these two 0−− oddballs are

originally due to the different orders of the gluon field
strength tensor G and the dual field strength tensor ~G in
Eqs. (1) and (2). Note, while these two oddballs will not
mix with qq̄ states, they can, in principle, mix with hybrids
(qq̄g) [20] and tetraquark states [21] with the same
quantum number and similar mass, though naively the
OZI suppression may hinder the mixing in a certain degree.
As G0−−ð3810Þ, G0−−ð4330Þ, and the 0−− hybrid meson
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FIG. 3 (color). The same caption as in Fig. 1, but for case C.
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FIG. 4 (color). The same caption as in Fig. 1, but for case D.
Here the single vertical line indicates the lower limit of the valid
Borel window while the upper limit is out of the region.

TABLE I. The lower and upper limits of the Borel parameter τ (GeV−2) for 0−− oddballs for various cases with different
ffiffiffiffiffi
s0

p
(GeV).

case A case B case C case Dffiffiffiffiffi
s0

p
τmin τmax

ffiffiffiffiffi
s0

p
τmin τmax

ffiffiffiffiffi
s0

p
τmin τmax

ffiffiffiffiffi
s0

p
τmin τmax

4.90 0.29 0.44 5.50 0.23 0.34 4.90 0.26 0.45 4.90 0.28 0.86
4.70 0.32 0.43 5.30 0.25 0.33 4.70 0.28 0.45 4.70 0.31 0.86
4.50 0.36 0.41 5.10 0.27 0.32 4.50 0.30 0.44 4.50 0.34 0.86
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[20] are close in mass, at a minimum 3 state mixing
possibility should be further analyzed [22].
Note that the result for oddball mass in this work is larger

than that in the flux tube model, where the mass of a 0−−

oddball was predicted to be about 2.79 GeV [5], whereas
the lattice QCD calculation yielded an even bigger result
with large errors, 5166� 1000 MeV [23]. In this calcu-
lation the instanton and topological charge screening
effects have not been taken into account, which as
Forkel pointed out, is important [11] at least in cases like
the 0þþ and 0−þ states. In this work, since the obtained
results are very stable and the nonpertubative contributions
are already quite large, we speculate the instanton con-
tributions might be small. Detailed analysis on this issue is
beyond the scope of this Letter and left for future study.
Experimentally, since the present measurement results

for the glueball are either contradictory or at least non-
conclusive, searching for clear evidence of the glueball is
now still an outstanding unsolved problem. This situation
may be changed if measurement of unconventional glue-
balls makes progress. We suggest the 0−− oddballs to be the
priority ones in future experimental measurement due to
the reasons mentioned above. Following, we make a brief
analysis on the feasibility of finding oddballs G0−−ð3810Þ
and G0−−ð4330Þ in experiment.
Taking the light one, the G0−−ð3810Þ, as an example, it

can be produced in processes Xð3872Þ → γ þ G0−−ð3810Þ,
ϒð1SÞ → f1ð1285Þ þ G0−−ð3810Þ, ϒð1SÞ → χc1 þ
G0−−ð3810Þ, χb1 → J=ψ þ G0−−ð3810Þ, and χb1 → ω þ
G0−−ð3810Þ. All the parent particles in the above processes
are copiously produced in experiment, and hopefully
decay to the oddball with modest rates. To finally ascertain
G0−−ð3810Þ, a straightforward procedure is to reconstruct it
from its decay products, though the detailed characters of
it need more work. Relatively, the exclusive processes are
more transparent in this aim, such as G0−−ð3810Þ → γþ
f1ð1285Þ, G0−−ð3810Þ → γ þ χc1 , and G0−−ð3810Þ → ωþ
f1ð1285Þ. These typical oddball production and decay
processes are expected to be measurable in experiments,
e.g., at the LHCb. Detailed analysis on these oddball
production and decay issues will be given elsewhere.
In summary, based on the interpolating currents with the

quantum number of JPC ¼ 0−−, the oddball mass spectrum
is calculated in the framework of QCD sum rules. Two
stable 0−− oddballs are obtained with masses about 3.81
and 4.33 GeV. We have briefly analyzed the 0−− oddball
optimal production and decay mechanisms, which indicates
that the long searched for elusive glueball is expected to
be measured in BESIII, BELLEII, Super-B, PANDA, and
LHCb experiments.
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