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We consider an open system near a quantum critical point that is suddenly moved towards the critical
point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling
behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical
exponents. We determine this exponent and show that it describes universal prethermalized coarsening
dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical
prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the
equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow
quenches.
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Predicting the out-of-equilibrium dynamics of quantum
many-body systems is a challenge of fundamental and
practical importance. This research area has been boosted
by recent experiments in cold-atom gases [1] and scaled-up
quantum circuits [2], by ultrafast pump-probe measure-
ments in correlated materials [3–5], and by performing
heavy-ion collisions that explore the quark-gluon plasma
[6]. In this context, the universality near a quantum critical
point (QCP), well established in and near equilibrium,
comes with the potential to make quantitative predictions
for strongly interacting systems far from equilibrium. For
example, the quantum version [7–11] of the Kibble-Zurek
mechanism of defect formation [12,13] was developed for
systems driven through a symmetry breaking QCP at a
small, but finite rate. Similarly, near a QCP the long-time
dynamics after a sudden change of Hamiltonian parameters
is governed by equilibrium exponents [14]. These phenom-
ena occur in the regime of longest time scales.
Recently, however, many physical systems away from

equilibrium were identified which display novel dynamical
behavior on intermediate time scales, a behavior often
referred to as prethermalization [15–25]. The question
arises whether one can expect universality during pre-
thermalization if one drives a system towards a QCP. Even
if this is done at a finite rate 1=τ, a system will fall out of
equilibrium at some point, a behavior owed to the critical
slowing down near the QCP. Then a scaling theory with
characteristic time scale τ can be developed [10], where
regions of the size of the freeze-out length ∝ τ1=z emerge
that behave like in equilibrium. z is the dynamic critical
exponent. In the case of a quantum quench, the time scale τ
and the freeze-out length become comparable to micro-
scopic time and length scales, respectively, and the system
instantly falls out of equilibrium. The detailed recovery of
this out-of-equilibrium dynamics, along with the time
dependence of length scales, order-parameter correlations,

and the potential for out-of-equilibrium universality are
major theoretical and experimental challenges.
In this Letter, we show that the time evolution of

observables in an open system that is suddenly moved
to a QCP displays universal behavior [see Figs. 1(a)–1(b)].
Their nonequilibrium dynamics is governed by a critical
exponent that describes the slow decay of postquench
correlations and response soon after a quantum quench,

(a) (b)

(c)

FIG. 1 (color online). (a) Schematic description of the setup and
quench protocol. (b) Schematic phase diagram as a function of
temperature T and mass δri ¼ r0;i − r0;c. Red arrows describe the
quench protocol. Dynamics exhibits three time regimes: t < tγ ¼
γ−z=ð2ðz−1ÞÞ with nonuniversal dynamics, the universal prether-
malized regime tγ < t < t� ∝ δr−νz=κi which we study, and a
quasiadiabatic regime t > t� described by equilibrium critical
exponents. Here, γ is the system-bath coupling and κ=ν the
scaling dimension of δri. (c) Correlation length collapse and
light-cone-like revival following a quench with initial length ξi.
Inset: sketches of order parameter configurations with domains of
typical size ξðtÞ.
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where initial correlations are still important. It is therefore
not related to equilibrium exponents. This behavior is
astounding as universality is usually reserved for large
time and length scales. From the value of the exponent we
conclude that initial state correlations rapidly collapse after
a quench and that the order parameter undergoes an
intermediate coarsening, i.e., grows due to the growing
light-cone length ξðtÞ ∝ t1=z [see Fig. 1(c)], before it decays
quasiadiabatically at longer times. We also demonstrate that
the duration of this intermediate prethermalization can be
manipulated and tuned to be arbitrarily large. While there
are important differences between classical and quantum
quenches, the analysis of this Letter was motivated by the
pioneering theory of classical dynamics in Ref. [[26]] (see
also Ref. [27] for the case of colored noise).
The quench protocol that underlies our analysis is

indicated in Figs. 1(a)–1(b). We consider a quantum
many-body system that is coupled to an external bath of
harmonic oscillators. Prior to the quench, the complete
system is prepared in the ground state of the initial
Hamiltonian Hi¼Hs;iþHbþHsb. The initial Hamiltonian
of the system, Hs;i, describes an N-component scalar
quantum field φðx; tÞ with components φa (a ¼ 1;…; N):

Hs;i ¼
1

2

Z
ddx

�
π2 þ r0;iφ2 þ ð∇φÞ2 þ u

2
φ4

�
; ð1Þ

where π is the canonically conjugated momentum to φ.
Hb ¼ 1

2

R
ddx

P
lðΩ2

lX
2
l þ P2

l Þ describes the external bath of
harmonic oscillators and Hsb ¼

P
lcl

R
ddxXl · φ the cou-

pling between the system and bath. Next, we suddenly
changeHs;i → Hs by switching r0;i → r0;c to its value right
at the QCP of systemþ bath in equilibrium [see Fig. 1(b)].
The time evolution after the quench is now governed by the
new Hamiltonian H ¼ Hs þHb þHsb. The bath ensures
that the system eventually equilibrates at T ¼ 0, which
allows reaching the QCP for t → ∞. A crucial variable is the
distance to the critical point δri ¼ r0;i − r0;c before the
quench.After the quenchwe consider δrf ¼ r0;f − r0;c ¼ 0,
while the same behavior is expected for generic quenches
that move the system closer to the critical point δrf ≪ δri or
take place at a finite but small temperature T ≪ δrνzi =γ

z=2

with system-bath coupling γ defined below.
The Hamiltonian Hs;i of Eq. (1) describes a transverse-

field Ising model for N ¼ 1, systems near a superconduct-
ing-insulator quantum phase transition, Josephson junction
arrays, and quantum antiferromagnets in an external
magnetic field for N ¼ 2, or quantum dimer systems for
N ¼ 3 [28]. Our theory for systemþ bath can then be
applied to a range of systems such as dissipative super-
conducting nanowires [29], the superfluid-insulator tran-
sition in cold-atom gases coupled to other bath atoms [30],
or low-dimensional Heisenberg spin dimers or transverse
field Ising spins with strong quantum fluctuations and
coupling to phonons. Another promising realization can be

achieved by an ensemble of qubits in a photon cavity
[2,31]. The effects of the bath are described in terms of
ηðωÞ ¼ −

P
l c

2
l =ððωþ i0þÞ2 − Ω2

l Þ. We consider for the
spectral density of the bath,

ImηðωÞ ¼ γωjωjα−1e−jωj=ωc ; ð2Þ
with damping coefficient γ and cutoff energy ωc. The
exponent α determines the low-energy spectrum of the
bath, where α ¼ 1 corresponds to Ohmic damping while
α > ð<Þ1 corresponds to super-Ohmic (sub-Ohmic) damp-
ing [32]. In the following, we consider the hierarchy of
scales ωc ≫ t−1γ ¼ γ1=ð2−αÞ and analyze the regime t > tγ
when the dynamics is dominated by the bath. For the one-
loop RG analysis used in this Letter, it holds z ¼ 2=α.
We start with general scaling arguments for the non-

equilibrium dynamics after a quench towards the QCP. The
scaling behavior will be confirmed using a perturbative
renormalization group (RG) analysis later in the Letter. In
equilibrium, the order parameter behaves as a function of
the distance δr to the QCP according to hφaðδrÞieq ¼
b−β=νhφaðb1=νδrÞieq, with scaling parameter b > 1, which
leads to the well-known behavior hφaðδrÞieq ∝ δrβ. In our
case δr rapidly changes as a function of time from δri to
δrf, leading to a t dependence of the order parameter. The
generalization of the equilibrium scaling relation can be
performed in analogy to boundary layer scaling theory as it
occurs near surfaces and interfaces [33]. Here, a new
healing length scale associated with surface fields appears.
In our problem, the boundary layer incorporating the initial
value problem corresponds to a “surface in time” [34–36]
and exhibits an associated new healing time scale t�.
Following Ref. [33] we obtain for the order parameter
hφaðδri;δrf; tÞi¼ b−β=νhφaðbκ=νδri;b1=νδrf;b−ztÞi. While
δrf scales as in equilibrium, reflecting the fact that the
system approaches equilibrium for t → ∞, the initial mass
δri has a nontrivial scaling exponent κ=ν. For δrf ¼ 0, i.e.,
a quench right to the QCP, it follows with b ¼ t1=z,

hφaðt; δriÞi ¼ t−β=ðνzÞΦðtκ=ðνzÞδriÞ; ð3Þ

FIG. 2 (color online). Schematic order parameter dynamics
hφðtÞi. In the prethermalized regime tγ < t < t� (blue) it is
governed by a new universal critical exponent θ. At longer
times, hφðtÞi decays to zero quasiadiabatically as described by
equilibrium exponents.
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with universal function ΦðyÞ. As shown in Fig. 2, in the
long time limit t ≫ t� for Φðy ≫ 1Þ → const, the order
parameter decays quasiadiabatically (hφaðtÞi ∝ t−β=ðνzÞ ∝
ξðtÞ−β=ν) to zero with time scale

t� ∝ δr−νz=κi : ð4Þ

In the opposite limit, t ≪ t�, the situation is qualitatively
different. Assuming in analogy to Ref. [33] that the
susceptibility with respect to a temporal boundary-layer
term hφa;ii ∝ δrβi is finite, it follows Φðy ≪ 1Þ ∝ yβ, such
that

hφaðtÞi ∝ tθ with θ ¼ ðκ − 1Þβ
νz

: ð5Þ

Thus, a new universal time dependence of the order
parameter emerges at short times. The value of the
exponent θ is determined by the scaling dimension κ of
δri. The time scale t� separates the regime governed by the
initial quench and concomitant fall out of equilibrium from
the quasiadiabatic long time behavior. Thus, in analogy to
spatial boundary layer problems it describes the dynamic
healing after the quench.
The same exponent θ also determines the time

dependence of correlation and response functions. To
analyze the nonequilibrium dynamics we employ the
Keldysh formalism of many-body theory [37] and use
the specific form of the Keldysh contour of Ref. [38],
appropriate for our quench protocol. The key quantities are
the retarded response function GR and the Keldysh corre-
lation function GK:

GRðk; t; t0Þ ¼ −iθðt − t0Þh½φaðk; tÞ;φað−k; t0Þ�−i;
GKðk; t; t0Þ ¼ −ih½φaðk; tÞ;φað−k; t0Þ�þi; ð6Þ
with momentum k. They are no longer related by the
fluctuation-dissipation theorem. We expect from dimen-
sional arguments

iGRðKÞðk; t; t0Þ ¼
�
t
t0

�
θðθ0Þ fRðKÞðkzt=γz=2; t0=tÞ

k2−η−zγz=2
: ð7Þ

In an out-of-equilibrium state the correlation and response
functions depend on both time variables. This gives rise to
an additional dimensionless ratio t=t0 compared to scaling
in equilibrium. The singular dependence on this ratio in GR

andGK is characterized by exponents θ and θ0, respectively.
Thus, the scaling functions fR and fK depend only weakly
on t0=t if t ≫ t0. The exponents θ and θ0 are not indepen-
dent. Relating GR and GK in the Dyson equation
yields θ ¼ θ0 þ 2−z−η

z .
Let us now demonstrate that θ in Eqs. (5) and (7) is

indeed the same. We consider an initial state characterized
by a finite order parameter hφii [path A → C in Fig. 1(b)].
A region of volume ξðtÞd is correlated at time t

after the quench and Eq. (7) yields for the local, i.e.,
momentum averaged, correlation function GK

locðt; t0Þ ∝ðt=t0Þθ0 t−ðd−η−zþ2Þ=z. The initial order parameter hφii polar-
izes the system for a certain time. The magnetization at time
t is then hφiimultiplied by the local correlation function up
to t and the size of the correlation volume: hφðtÞi≃
hφiiiGK

locðt; t0Þ × td=z. We obtain the power law behavior
of the order parameter of Eq. (5). The time dependence of
the order parameter is therefore a balance between the
decay of local correlations encoded in GK

locðt; t0Þ and the
growth of the volume encompassed by light-cone propa-
gation, i.e., ξðtÞ.
Next, we demonstrate this behavior in an explicit

analysis and determine the value of the exponent θ. We
start using simple perturbation theory and perform a more
rigorous renormalization group analysis in the second step.
At time t after the quench correlations are limited by the
light cone. This gives rise to a time dependent mass rðtÞ ¼
γa=t2=z in the propagator, where a is a dimensionless
coefficient. Scattering events caused by collisions of
excitations in regions of t-dependent size turn out to be
highly singular. A perturbation theory in a that includes
such scattering events yields to leading order and for t0 ≪ t:

GRðk; t; t0Þ ¼ GR
0 ðk; tÞ½1þ θ logðt=t0Þ þ � � ��; ð8Þ

where the omitted terms are nonsingular for t0 → 0 and

θ ¼ −
a sinðπ=zÞ
Γð2=zÞ : ð9Þ

GR
0 is the bare retarded Green’s function given in the

Supplemental Material [39]. Exponentiation of the loga-
rithm leads to Eq. (7).
We now perform a momentum-shell RG approach to sum

up these logarithms in a controlled fashion and determine
the exponent θ. In full analogy to the equilibrium case we
integrate out states in a shell with momenta Λ=b < k < Λ
with b > 1 and rescale fields, momenta, and time variables.
The small parameter controlling the calculation is the
deviation from the upper critical dimension ϵ ¼ 4−
d − z. The mass δri in the initial Hamiltonian is a
strongly relevant perturbation and rapidly flows to large
values. The nonequilibrium dynamics of the system is
therefore governed by the deep-quench fixed point
ðû�; δr�i ; δr�fÞ ¼ ðû�;∞; 0Þ. Here, û� ¼ czϵ=ðN þ 8Þ is
the equilibrium value of the dimensionless coupling con-
stant û¼ uKdΛ−ϵ=γz=2 with Kd ¼ Γðd=2Þ=(2πd=2ð2πÞd)
and coefficient cz ¼ 4 sinðπz=2Þ=(zð2 − zÞsinz=2ðπ=zÞ).
The scaling dimension of δri is relative to the fixed point
δr�i ¼ ∞, i.e., 1=δri ∝ b−κ=ν is a dangerously irrelevant
variable at the deep quench fixed point.
We work with δri > 0 corresponding to a quench out of

the unbroken phase and assume that θ is the same for the
two paths A → C and B → C. For the mass renormalization
after the quench follows at one loop,
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rf 0ðtÞ ¼ b2rfðbztÞ þ u
N þ 2

2

Z
> ddk
ð2πÞd iG

K
0 ðk; t; tÞ; ð10Þ

where > refers to momenta inside the shell. In equilibrium
rfðtÞ is t independent and we recover the usual one-loop
result for the mass renormalization. The quench mixes rfðtÞ
at different times during the flow. For a similar analysis of
classical surface criticality, see Ref. [40]. We replace δri,
that enters GK

0 , and û by their deep-quench fixed-point
values. From Eq. (10) we then obtain a differential equation
for the corresponding time-dependent fixed-point mass
r�fðtÞ:

2r�f þ zt
dr�f
dt

þ ðN þ 2Þû�Λ2

2
fK0 ðΛzt=γz=2; 1Þ ¼ 0: ð11Þ

The scaling function fK0 characterizes GK
0 according to

Eq. (7). The solution of Eq. (11) is

r�fðtÞ ¼
γa

t2=z
−
ðN þ 2Þû�Λ2

2zt2=z

Z
t
dt0fK0

�
Λzt0

γz=2
; 1

�
t0ð2−zÞ=z;

ð12Þ

where a denotes the integration constant of Eq. (11). We
find fK0 ðΛzt=γz=2 → ∞; 1Þ → fKeq;0, where fKeq;0 describes
the equal-time Keldysh function in equilibrium after the
quench. For a perturbative RG analysis a long range decay
of the mass parameter cannot emerge. We can therefore fix
the integration constant a from the condition that r�fðtÞ
rapidly approaches its equilibrium value, i.e., that δr�fðtÞ ¼
r�fðtÞ − r�eq → 0 for t ≫ γz=2Λ−z:

a ¼ ðN þ 2Þû�
2z

Z
∞

0

dx½fK0 ðx; 1Þ − fKeq�xð2−zÞ=z: ð13Þ

The derivation of the free nonequilibrium Keldysh function
GK

0 and thus of fK0 ðx; 1Þ is given in the Supplemental
Material [39]. Once we determine the coefficient a, the
exponent θ follows from Eq. (9). For an Ohmic bath
with α ¼ 1, i.e., z ¼ 2, we find analytically az¼2 ¼
−ðN þ 2Þ=ðN þ 8Þðϵ=4Þ, which yields with Eq. (9) the
exponent [39]

θz¼2 ¼
N þ 2

N þ 8

1

4
ϵ > 0: ð14Þ

For a bath with colored noise, we determine the exponent
numerically. Our results for Cz ¼ θðN þ 8Þ=ðN þ 2Þð1=ϵÞ
are shown in Fig. 3(a). We find a maximal value for Cz
(and thus θ) in the slightly sub-Ohmic regime, while
θðz → 4Þ → 0 since ϵ > 0 requires at least z < 4. For
z < 2 the exponent decreases and changes sign for
z ≈ 1.8. From Eq. (13) it follows that the coefficient a
and thus θ can only change sign if equal-time correlations

decay nonmonotonically. In Fig. 3(b) we show the scaling
function fK0 ðx; 1Þ which proves that this is indeed the case
for a super-Ohmic bath. Note, in our analysis the limit
z → 1 does not correspond to the closed system with
ballistic time evolution as we always consider the limit
of bath-dominated dynamics.
For z ¼ 2 the value of Cz¼2 turns out to be the same as for

a classical phase transition [26,27]. Identical coefficients
for classical and quantum phase transitions might suggest
that quantum effects are not important for the quench
dynamics. However, considering generic values of z the
exponents (for given ϵ) of a classical and quantum quench
are distinct, demonstrating the quantum quench dynamics
is in a different universality class as the classical one.
Let us discuss the physical implications of these results.

(i) Collapse of the correlation length: We compare the
correlation length prior to the quench ξi ∝ δr−νi with its
value at the crossover between the prethermalized regime
and equilibration ξðt�Þ ∝ δr−ν=κi . θ > 0 implies with Eq. (5)
that κ > 1, such that ξðt�Þ < ξi for small δri. Right after the
quench the system falls out of equilibrium and breaks up
into many small uncorrelated regions. The correlation
length collapses and does not reach its prequench value
during prethermalization. It takes until after the time scale
t� that the system recovers its initial correlations [see spin
configurations in Fig. 1(c)]. (ii) Order parameter dynamics:
From Eq. (5) follows for θ > 0 that the order parameter
grows as function of time. The physical explanation for this
behavior follows from our discussion of the path A → C.
θ > 0 leads to a slowing down of the temporal decay of
local correlations. On the other hand, the size of correlated
regions increases according to the light-cone scale ξðtÞ. The
order parameter grows because of the coarsening that takes
place at intermediate time scales, where the growth in ξðtÞ
outweighs the decay of correlations. Thus, the growth of

(a) (b)

FIG. 3 (color online). (a) Prethermalization exponent θ as a
function of dynamic critical exponent z. Plot shows Cz ¼
θðN þ 8Þ=ðN þ 2Þð1=ϵÞ, where N is the number of components
of φ and ϵ ¼ 4 − d − z. Blue dot indicates the analytical result of
Eq. (14). (b) Free Keldysh scaling function fK0 ðqztÞ − feq;0 after
the quantum quench for different dynamic critical exponents
z ¼ 1.2 (red dotted), 1.4 (yellow dashed), 2 (blue dot-dashed),
and 2.5 (green). Inset shows the exponential decay of the
envelope towards the equilibrium distribution, which becomes
algebraic in the presence of interactions.
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the order parameter ∝ tθ is caused by the recovery of
locally ordered regions after the collapse of the correlation
length. The long-time, quasiadiabatic order-parameter
dynamics hφaðtÞi ∝ ξðtÞ−β=ν only sets in when initial
correlations are recovered. (iii) Equal time correlations:
a straightforward extension of our RG analysis to the
scaling function fK in Eq. (7) yields, instead of the
exponential decay of the bare correlation function
shown in Fig. 3(b), a power law decay fKðx; 1Þ ¼ fKeq −
½2θΓð2=zÞ=(cz sinðπ=zÞ)�x−2=z with universal coefficient
proportional to θ. (iv) The regime with θ < 0: In this case
no coarsening growth of the order parameter occurs, yet its
decay is slowed down if compared to the quasiadiabatic
regime. In addition, the correlation length recovers before
the crossover time t� is reached. (v) Duration of pretherm-
alization: Since the crossover time t� diverges for weak
quenches, an almost critical system, subject to a sudden
change of its parameters, undergoes universal out-of-
equilibrium dynamics for arbitrarily long periods of time.
In conclusion, we determined universal behavior that

governs quantum critical prethermalization. The intermedi-
ate time dynamics of a system that is suddenly moved to a
nearby QCP is characterized by a new exponent θ. Owed to
the quench, the system instantly falls out of equilibrium and
breaks up into small correlated regions. The quantum
critical prethermalization describes the recovery after this
collapse and extends over long times, depending on the
initial distance from the critical point. A quench close to a
quantum critical point opens the possibility to quantita-
tively analyze the universal far-from-equilibrium dynamics
of a many-body system and to manipulate the crossover
between prethermalization and thermalization regimes.
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