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We show that density-dependent synthetic gauge fields may be engineered by combining periodically
modulated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to
a density-dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator
transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between
the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at
vanishing interactions, characterized by the appearance of a fractional Mott insulator.

DOI: 10.1103/PhysRevLett.113.215303 PACS numbers: 67.85.-d, 03.65.Vf, 03.75.Lm, 37.10.Jk

The emulation of synthetic electromagnetism in cold
neutral gases has attracted major interest [1,2]. Artificial
electric and magnetic fields have been induced using lasers
[3–5]. Moreover, these setups may be extended to generate
non-Abelian fields, and in particular, spin-orbit coupling
[6–13]. Synthetic fields may be generated as well in optical
lattices, and recent experiments have created artificial
staggered [14–16] and uniform [17,18] magnetic fields.
These fields are, however, static, as they are not influenced
by the atoms.
The dynamical feedback between matter and gauge

fields plays an important role in various areas of physics,
ranging from condensed matter [19] to quantum chromo-
dynamics [20], and its realization in cold lattice gases is
attracting growing attention [21]. Schemes have been
recently proposed for multicomponent lattice gases, such
that the low-energy description of these systems is that of
relevant quantum field theories [22–31]. The backaction of
the atoms on the value of a synthetic gauge field is expected
to lead to interesting physics, including statistically induced
phase transitions and anyons in 1D lattices [32], and chiral
solitons in Bose-Einstein condensates [33].
Periodically modulated optical lattices open inter-

esting possibilities for the engineering of lattice gases
[16–18,34–40]. In particular, periodic lattice shaking results
in a modified hopping rate [34–36], which has been
employed to drive the superfluid (SF) to Mott insulator
(MI) transition [37], to simulate frustrated classical magnet-
ism [38], and to create tunable gauge potentials [16].
Interestingly, a periodically modulated magnetic field
may be employed in the vicinity of a Feshbach resonance
to induce periodically modulated interactions, which result
in a nonlinear hopping rate that depends on the occupation
differences at neighboring sites [41–43].
In this Letter, we show that combining periodic inter-

actions and Raman-assisted hopping may induce a density-
dependent gauge field in 1D lattices. The created field

results in a density-dependent shift of the momentum
distribution that may be probed in time-of-flight (TOF)
experiments. Moreover, contrary to the Peierls phase indu-
ced in shaken lattices [16], the created field cannot be
gauged out and, hence, affects significantly the ground-state
properties of the lattice gas, leading to gauge-induced SF to
MI transitions, the emergence of MIs at vanishing inter-
action, and strongly modified correlations in the SF regime.
AB model.—We introduce, in the following, a possible

setup that creates a density-dependent Peierls phase that
cannot be gauged out. We consider a tilted 1D spin-
dependent lattice (see Fig. 1), in which atoms in state
j1i (j2i) are confined in the sublattice A (B). A first pair of
Raman lasers induces Raman-assisted hopping between an
A site and the B site to its right, whereas a second pair leads
to hopping between an A site and the B site to its left [44].
We consider that, within a period T, for 0 < t < T=2, the
Raman assisted coupling AB (BA) is on (off) and vice versa
for T=2 < t < T. The Hamiltonian of the system is

ĤAB ¼ −
X
j

½JABðtÞb̂†2jb̂2jþ1 þ JBAðtÞb̂†2jb̂2j−1 þH:c:�

þUAðtÞ
2

X
j

n̂2jðn̂2j − 1Þ þUB

2

X
j

n̂2jþ1ðn̂2jþ1 − 1Þ;

ð1Þ
where JAB ¼ J and JBA ¼ 0 for 0 < t < T=2, JAB ¼ 0
and JBA ¼ J for T=2 < t < T, and even (odd) site index
corresponds to the A (B) sublattice. We consider that the
interaction of components j1i can be independently modu-
lated from those of j2i, such thatUA ¼ UA0 þUA1ðtÞ, with
UA1ðtÞ ¼ UA1ðtþ TÞ and R tþT

t dt0UA1ðt0Þ ¼ 0, whereasUB
is constant (we consider for simplicity UA0 ¼UB≡U
[45]). As shown in Refs. [41,42], a sufficiently fast
modulation of the interactions leads to an effective model
with a density-dependent hopping (as discussed in the
SupplementalMaterial [46], justmodulating the interactions
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in a standard Bose-Hubbard model does result in a density-
dependent Peierls phase, but this phase can be gauged
out [46]). For the particular case of theABmodel, we obtain,
for a fast modulation, the effective Hamiltonian [47]

ĤAB
eff ¼ −

X
j

½b̂†2j ~JABðn̂2jÞb̂2jþ1 þ b̂†2j ~JBAðn̂2jÞb̂2j−1 þH:c:�

þU
2

X
j

n̂2jðn̂2j − 1Þ þU
2

X
j

n̂2jþ1ðn̂2jþ1 − 1Þ; ð2Þ

with ~JABðn̂2jÞ ¼ ðJ=TÞ R T=2
0 dteiVðtÞn̂2j=ℏ, ~JBAðn̂2jÞ ¼

ðJ=TÞ R T=2
0 dteiVðtþT=2Þn̂2j=ℏ, and VðtÞ ¼ R

t
0 UA1ðt0Þdt0.

For UA1ðtÞ ¼ ~UA1 sinðωABtÞ for 0 < t < T=2 (with
ωAB ¼ 4π=T), and UA1ðtÞ ¼ − ~UA1 sinðωABtÞ for T=2 <
t < T [see Fig. 1(b)], ~JABðn̂2jÞ ¼ ðJ=2ÞJ0ðΩABn̂2jÞeiΩABn̂2j ,
whereas ~JBAðn̂2jÞ ¼ ~JABðn̂2jÞ�, with ΩAB ¼ ~UA1=ℏωAB.
For more general forms of UA1ðtÞ [46], arg½ ~JAB�¼ϕABn̂2j
and arg½ ~JBA� ¼ ϕBAn̂2j. The created Peierls phase cannot
be gauged out if Φ≡ ϕAB − ϕBA ≠ 0, crucially altering
the ground-state properties.
Quasimomentum distribution.—The created Peierls phase

results in a drift of the quasimomentum distribution in the
SF regime. As in recent experiments on shaken lattices [16],
this shift may be probed in TOF (details about experimental
detection are discussed below). Figure 2(a) shows the

quasimomentum distribution as a function of the average
density hn̂i for a homogeneous system withΩAB ¼ π=4 and
U ¼ 0.2J. However, in contrast to shaken lattice experi-
ments, the momentum shift is density dependent. This
dependence results in a nontrivial behavior of the quasimo-
mentum distribution in the presence of an external harmonic
confinement, which may be accounted for by an additional
term VT

P
jðj − L=2Þ2n̂j in the Hamiltonian (2). As shown

in Fig. 2(b), for larger VT, the quasimomentum distribution
shifts due to growing central density and broadens due
to the inhomogeneous density distribution hn̂ji.
Ground-state phase diagram.—The nongaugeable

density-dependent Peierls phase and the associated
broken AB symmetry are crucial for the ground-state
physics of the AB model (see Fig. 3, in which μ is the
chemical potential). MI phases at half-integer filling are
induced by the AB asymmetry, opening, immediately,
at any finite J. For hn̂i ¼ 1=2 at J=U ≪ 1, we may
project on the manifold with 0 or 1 particle per site
and we may identify j0i → j↑i and j1i → j↓i, obtaining
up to OðJ2=UÞ the effective spin-1

2
Hamiltonian Ĥ1=2¼

Ĥ0þĤ2, with Ĥ0¼−J
P

jŜ
þ
j Ŝ

−
jþ1þH:c:, and ðU=J2ÞĤ2 ¼P

j½Ŝþ2jð12 þ Ŝz2jþ1ÞŜ−2jþ2 þ Γ2Ŝþ2j−1ð12 þ Ŝz2jÞŜ−2jþ1 þ H:c:�−
ð1þ jΓj2ÞPjŜ

z
jŜ

z
jþ1, with Γ≡ 1

2
J0ðΩABÞeiΦ=2. Hence, the

perturbative corrections result in nearest neighbor inter-
actions and staggered correlated hopping. Following similar
arguments as those employed for the treatment of the spin-
Peierls problem [49], one may show that the staggered
correlated hopping becomes immediately relevant (in the
renormalization group sense) for free hard-core particles,
and hence, any AB-dependent Γ opens a (band insulator)
gapped phase at half-filling for U → ∞ (see Supplemental
Material [46] for details). A similar reasoning applies for
higher half-integer fillings n̄þ 1=2, by considering hard-
core particles on top of a pseudovacuumwith n̄ particles per
site. Note that the Mott boundaries depend onΦ, and hence,
varying Φ at constant J=U results in gauge-induced phase
transitions [Fig. 3(b)], similar to the statistical transitions of
Ref. [32]. In particular, for Φ → π one observes a strong
enhancement of the MI gaps. Half-integer and integer
MIs may be revealed by the appearance of density plateaus
in the presence of a harmonic trap [50].
Vanishing on-site interaction.—The effect of the density-

dependent hopping is particularly relevant in the regime of
vanishing interaction, U=J → 0. In this regime, for the
usual Hubbard model, the system becomes unstable for
μ > −J; i.e., any filling factor becomes possible [note the
bunching of curves of constant filling for ΩAB ¼ 0 in
Fig. 3(c)]. The presence of density-dependent hopping
stabilizes the system at low fillings [Fig. 3(c)]. Moreover,
the AB asymmetry results in a MI at half-filling even for
U=J ¼ 0. This anomalous behavior results from the effec-
tive repulsive character of the gas even when U ¼ 0. This
may be understood from the two-particle problem, which

FIG. 1 (color online). Scheme of the AB set up: (a) for 0 <
t < T=2 Raman assisted hopping couples an A site with the B site
at their right; for T=2 < t < T, it couples an A site with the B site
at their left; (b) the UA1ðtÞ function is sinðωABtÞ for 0 < t < T=2
and − sinðωABtÞ for T=2 < t < T, with ωAB ¼ 4π=T.

FIG. 2 (color online). (a) Ground-state quasimomentum dis-
tribution for model (2) for a homogeneous distribution in 24 sites
with ΩAB ¼ π=4, U ¼ 0.2J, and a density hn̂i; (b) same for a
harmonically trapped gas as a function of VT (see text) for
ΩAB ¼ π=4, U ¼ J, and 24 particles in 24 sites. Both figures
show density-matrix renormalization group (DMRG) [48] results
with 500 states, and a maximal occupation per site nmax ¼ 10.
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provides a useful description in the dilute limit [51]. The
effective scattering length (in lattice spacing units) becomes
of the form [46]

aðU → 0Þ ¼ ½3þ 5 cosðΦÞ�jΓj2 þ 2

½5þ 3 cosðΦÞ�jΓj2 − 2
: ð3Þ

By comparison to a 1D Bose gas of particles with mass m
and contact interaction, one may extract an effective
interaction strength g ¼ −2=ðamÞ [51]. The scattering
length diverges for jΓj → 1=2, Φ → 0, 2π but remains
finite and negative for any other phase Φ which coincides
with the observation that the AB-correlated hopping
Hubbard model behaves as a repulsively interacting system
for small filling even in the limit of U → 0. Incidentally,
we would like to mention that this effect may be observed,
as well, for the anyon model of Ref. [32], although, in that
case, the Mott plateau at half-filling is absent.
Correlation functions in the superfluid regime.—

The density-dependent gauge has important consequences
for the correlations in the SF regime [46]. This is
best understood by employing bosonization [49]:
b̂†j →

ffiffiffiffiffiffiffiffiffiffiffi
ρðxjÞ

p
e-i½θðxjÞ−ηxj�, with ρðxÞ ¼ ρ0 − ð1=πÞ∇ϕðxÞþ

ρ0
P

p≠0e
i2p½πρ0þϕðxÞ�, ρ0 the average density, and xj the

position of site j. The fields θðxÞ and ϕðxÞ characterize the
density and phase, respectively, whereas η is for a global
gaugeable phase shift. The bosonized Hamiltonian acquires
the form [46]

Ĥ ¼ u
2π

Z
dx½K−1ð∂xϕÞ2 þ Kð∂xθÞ2 þ 2γð∂xϕÞð∂xθÞ�;

ð4Þ
where u is a velocity, K is the Luttinger parameter, and γ
characterizes a mixing term that stems from the density-
dependent Peierls phase. The decay of single particle
correlations depends only on K as hb̂†i bji ∝ ji − jj−1=2K
[46]. As depicted in Fig. 4, K decreases with increasing
ΩAB. This behavior can be understood already from the
weak-coupling regime, in which K may be determined
analytically [46]

K2 ¼ π2ρ0 ~Fðρ0Þ
2U
J −R(ρ0

d2 ~F
dρ2 ðρ0Þ þ 2 d ~F

dρ ðρ0Þ)
; ð5Þ

with R the real part, ~FðρÞ ¼ FðρÞe−i arg½Fðρ0Þ�, and FðρÞ ¼
J0ðΩABρÞeiΩABρ for the AB model [but the result may be
generally applied to other forms of density-dependent
tunneling, Fðn̂jÞ]. Figure 4 shows that our DMRG results
are in excellent agreement with Eq. (5) for small ΩAB,
which corresponds to the weak-coupling limit. The reduc-
tion of K results, on one hand, from the trivial reduction
of the hopping strength [J → J ~Fðρ0Þ], and on the other
hand from a nontrivial contribution due to the density
dependence (denominator of K). The latter stems from the
effective repulsion discussed above. Note, in particular,
that a density-dependent Peierls phase, with jFðρÞj ¼ 1, as
that of Ref. [32], would lead, as well, to strongly modified
correlations characterized by a significant reduction of K
[46]. The modification of K due to the density-dependent
gauge may be directly probed by monitoring the form of the
central momentum peak [52].

FIG. 3 (color online). Mott phases at half-integer and integer fillings of model (2). (a) MI lobes forΩAB ¼ π=2, Φ ¼ π. (b) Varying the
relative phase Φ may induce phase transitions in the ground state. Here, we choose ΩAB ¼ π=2 and change Φ [46] for J=U ¼ 2 (dashed
lines indicate a closing gap). (c) Lines of constant density and MI phase at half-filling for vanishing on-site interactions U ¼ 0. In the
DMRG-calculation system size L and maximal occupation number of bosons per site nmax have been scaled carefully (up to nmax ¼ 12
and L ¼ 144 sites) till a convergence was reached.

FIG. 4 (color online). Behavior of the Luttinger parameter K as
a function of ΩAB for U ¼ J=2 for ρ0 ¼ 1.75 (upper curves) and
ρ0 ¼ 0.75 (lower curves). Dashed lines indicate the analytical
estimation (5) in the weakly interacting regime, whereas the
circles denote our results obtained from DMRG calculations of
the single-particle correlation function.
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Adiabatic preparation.—We have focused above on the
effective model (2). As for shaken lattices [53], one may
start from the ground state without modulated interactions,
and adiabatically increase ~UA1. We have studied this
preparation by means of time-evolving block decimation
(TEBD) simulations [54] of the dynamics of Eq. (1) when
applying a linear ramp ~UA1ðtÞ ¼ ðt=τÞ ~UA1 for t < τ, and
constant afterwards [46]. Figure 5 depicts the value kmax
at which the momentum distribution is maximal, showing
that the evolved momentum distribution is in very good
agreement with that of the effective model. Note that the
drift kmax is only linear with ΩABhn̂i for a sufficiently small
value of ΩABhn̂i. For larger ΩABhn̂i, it presents a nontrivial
density dependence, especially at low hn̂i, due to number
fluctuations.
Detection.—Whereas the density distribution of the

effective model corresponds to that measured in the
laboratory frame, the measurement of the momentum
distribution in TOF presents some features that differ
significantly from the shaken lattice case [16]. First, since
the lattice is not actually shaken, the overall momentum
envelope resulting from the Fourier transform of the
Wannier functions does not oscillate in time. Second,
whereas the momentum distribution of the B sublattice
measured in TOF corresponds to that of the effective
model, the distribution of the A sublattice just coincides
with that of the effective model (and, also, with that of the
sublattice B) when VðtÞ ¼ 0. For intermediate times, the
phase appearing in the conversion between both reference
frames leads to a broadening, and eventual blurring, of the
TOF peaks [46].

Outlook.—Periodic interactions combined with Raman-
assisted hopping may create a density-dependent Peierls
phase that results in nontrivial ground-state properties,
characterized by a density-dependent momentum distribu-
tion, gauge-induced SF to MI transitions, the stabilization
of the Hubbard model at vanishing interactions, and
modified correlations in the SF phase. Although our
discussion has focused on the specific case of the AB
model, these peculiar properties are general for all models
with a density-dependent Peierls phase [55] (in the
Supplemental Material [46] we comment on the case of
the anyonic model of Ref. [32]).
The AB model may be extended to create a density-

dependent gauge field in a square lattice, in which each row
is an exact copy of the AB lattice as that discussed above,
and rows are coupled by direct (not Raman-assisted) hops.
Tilting the lattice leads to a row-dependent hn̂i and, hence,
to a different Peierls phase at each row when modulating
the interactions. In this way, a finite flux may be produced
in each plaquette, proportional to the density difference
between neighboring rows. As a result, density dependent
synthetic magnetic fields may be created, opening interest-
ing possibilities that deserve further investigation.
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