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In recent years new interest in Cherenkov radiation has arisen based on progress in its new applications
like biomedical imaging, photonic structures, metamaterials, and beam physics. These new applications
require Cherenkov radiation theory of short bunches to be extended to rather more complicated media and
structures than considered originally. We present a new general approach to the analysis of Cherenkov
fields and loss factors for relativistic short bunches in arbitrary slow wave guiding systems. This new
formalism is obtained by considering a general integral relation that allows calculation of the fields in the
vicinity of the charge. The proposed approach dramatically simplifies simulations using analytical fields
near the moving source of Cherenkov radiation.
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Introduction.—Cherenkov radiation (CR) from particle
bunches is of considerable importance in many areas of
fundamental and applied physics. Recent experiments and
corresponding theoretical study were concentrated on CR
sources ranging from low terahertz to visible light [1–3]. It
wasshown that anopticalpulsecanbeusedasaCRsource [4],
and that surface polaritons can be transformed intoCRaswell
[5]. CR in metamaterials [6] and photonic crystals [7] was a
subject of theoretical and experimental studies. Recently CR
has been applied for biomedical imaging purposes [8]. The
new research in the theory of CR [9] is also concentrated on
radiation in a finite region of space, the Tamm problem and
radiation of electric, magnetic, and toroidal dipoles [10].
The widest use of CR is in accelerator physics.

Relativistic, high intensity, and small emittance electron
bunches are the basis of linear collider [11,12] and free
electron laser [13] projects. These bunches excite
Cherenkov wakefields as long as electrons pass through
the accelerating structures or other longitudinally extended
components of a beam line (pipes, collimators, bellows)
[1,14–22].
Theoretical analysis of CR commonly considers a “short

bunch” approach. This is perfectly in agreement with
Cherenkov generating systems, where the moving charge
size is much less than the fundamental wavelength
[9,10,16]. This includes Cherenkov imaging and capillary
generation if the high frequency spectral range is not of
interest [2–8]. This also holds for accelerating structures
and other accelerator components, where the longitudinal
size of electron bunches are significantly smaller than the
lowest wavelength of the wakefields excited [1,14–16,19]:
this defines a “short” bunch in this context.
Wepropose a new theoretical approach that can be used for

obtaining direct analytical formulas for electromagnetic field
components at thepositionof apointlikeCherenkov radiation
source that can be either a short electron bunch or laser pulse.

The corresponding energy losses can be also calculated
analytically. Here we define the loss factor as the modulus
of the longitudinal electric field at the pointlike charge posi-
tion divided by the absolute value of the charge [1,14,16]. For
simplicity we consider a pointlike electron bunch passing
through waveguides lined with arbitrary slowdown layers. It
will be shown that the loss factor of the short bunch does not
depend on the waveguide system material and is a constant
for any given transverse dimensions and cross section of the
waveguides. The equivalence and exact matching of the loss
factor of beams passing through various waveguide configu-
rations is analyzed. With the proposed approach one can
use a relatively simple method for the calculation of the field
components and loss factors using an integral relation, or
“relativistic Gauss theorem” based on the cylindrical slow
wave structure model. For various cross section geometries
one can obtain the loss factor by using a conformal mapping
from the solution for the cylindrical case.
Cherenkov wakefields and loss factors.—The equiva-

lence of the loss factor of the beams passing through
various types of waveguides with thin slowdown regions
(features on the waveguide interior other than a smooth
perfectly conducting surface) have been noted previously
[14,15]. Indeed, the loss factor attains exactly the same
value for all disk-loaded cylindrically symmetric structures
[14,17,18,22], for a resistive pipe [1,16,23], a pipe with
small periodic corrugations [19,20], and a cylindrical metal
structure with a thin dielectric layer [19–21,24]. The same
equivalence of the loss factor can be found for noncylin-
drical structures as well [14]. In a planar or rectangular
all-metal waveguide with resistive walls [16,22], small
corrugations [14,15], or a thin dielectric liner [24,25]
the loss factor would be the same for structures with
equal apertures: it is a constant that is dependent on
transverse dimensions but independent of the material
properties.
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The wakefield experienced by a pointlike charge (loss
factor) in a waveguide of fixed transverse dimensions is
independent of the detailed properties of the slowdown
layer: this is a strong indication that a more general theory
of loss factors can be obtained. We have developed a new
approach to the loss factor analysis of relativistic pointlike
charges with only the assumption that the phase velocity of
the CR in the waveguide layers is less than the speed of
light (the bunch is assumed relativistic, V ¼ c).
Consider an ultrarelativistic point charge located on the

plane z ¼ ct moving with the speed of light at a center of a
vacuum channel with azimuthal symmetry and radius r ¼ a
[Figs. 1(a) and1(b)]. Other geometries besides cylindrical can
be calculated using the conformal mapping technique
that will be discussed below. Electric and magnetic fields
of the moving charge are present inside the channel, but the
field on the plane outside the cylindrical channel r > a,
z ¼ ct is zero. Here we consider that the field of the pointlike
charge on the plane vanishes because of (1) the presence of
slowdownwalls or layers outside the channel so thatVph < c,
and (2) the bunch is ultrarelativistic, γ → ∞. The combination
of these two factors inevitably delays the CR fields at radii
r > a away from the plane, z ¼ ct, moving with the bunch.
This allows the formulation of a general integral relation for
the loss factor of a short relativistic bunch passing through an
arbitrary waveguide, independent of the channel shape, the
properties of the walls, or its materials [as in Figs. 1(a) and
1(b)] if Vph < c at r > a.
Moreover, a special conclusion of this approach is that

the loss factor of waveguides with dielectric, corrugated, or
resistive slowdown regions does not depend on the layer
thickness and gives the same results as those for the loss
factor of the bunch passing the channel in an infinite
dielectric or any other media; see Fig. 1(c). Note that the
CR of the bunch moving through an infinite medium is the
same as for a particle passing along a channel inside an
unbounded dielectric [Fig. 1(c)], if the channel transverse
dimensions are close to the CR wavelength [9,26]. Finally,
if the fields in the area outside the vacuum channel vanish
for any reasons other than the ultrarelativistic limit (dif-
fraction shadow, etc.), the same integral relations will hold.
Field-particle interactions in high energy physics are

usually described in terms of wake and impedance for-
malism: more details can be found elsewhere [1,16,23].
Consider a point charge moving with the speed of light

along the axis of a vacuum accelerating structure. A test
charge also moving with the speed V ¼ c at a distance s
behind this pointlike bunch will experience fields of
the first charge if the bunch separation s is greater than the
so-called “catch-up” distance [1,16,23]. To describe the
interaction between the first and second particle, a function
WðsÞ called the wake potential was introduced [1,16,23].
Vanishing of the wake functions everywhere in front of a
relativistic particle is a consequence of causality: the wake
potential is equal to zero for s < 0. Wake potentials can be
expressed using an eigenmode decomposition, where wnðsÞ
is the wake function of the nth mode,

WðsÞ ¼
X
n

κnwnðsÞ; κ ¼ Wð0Þ ¼
X
n

κn: ð1Þ

Here κn is the loss factor for the nth eigenmode. The total loss
factor κ is usually defined as (1). In the case of a thin cor-
rugation layer [14,16–21] or dielectric [14,19,21,25] the total
loss factor is equal to the loss factor of the fundamental mode
of the structure. The expression for the loss factor of a
conductive cylindrical pipe [Fig. 2(a)] canbe foundelsewhere
[14,16,23]. The loss factor of a relativistic pointlike charge
passing through cylindrical, κc, [14,16–19] and planar, κp,
[15] structures [Figs. 2(a) and 2(c)] can be expressed as

κc ¼
1

2πa2cε0
; κp ¼ 1

2πa2pε0

π2

16
; ð2Þ

where ε0 is the dielectric permittivityof vacuum,ac is thepipe
radius, and ap is the vacuum half gap. Using the simple
integration over the structure cross section presented in the
next section, we can prove that formulas (2) and (3) can be
applied in the case of a thick layer and thus show that the
material thickness and properties do not affect the total loss
factor. Moreover, the calculation method is quite simple and
is based on an analog of Gauss’s law. We neglect for the
moment frequency dispersion.
Integral transformation.—Let us consider the circulation

of the magnetic field on the metal boundary of a waveguide
using the Maxwell-Ampère law; it could be written asZ

l⊥

H · dl ¼
ZZ
S⊥

�∂Dz

∂t þ ρV

�
dS; ð3Þ

where the integral on the right-hand side is calculated over
the cross section S⊥ of the waveguide, and the left-hand

(a) (b) (c)

FIG. 1 (color online). Cherenkov wakefield cones of a pointlike charge moving along (a) a waveguide with a thin arbitrary slowdown
layer on a metal surface; (b) waveguide with a thick layer; (c) infinite medium.
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side integral is taken along the metal sleeve of the
waveguide. Here ρ ¼ qδðz − VtÞδðx − x0Þδðy − y0Þ is
the charge density and V ¼ V · ez component of the charge
velocity vector codirectional with the z axis. Now consider
the waveguide cross sectional area Sq⊥ that includes the
charge. If we assume that our particle is moving with the
speed of light V ≈ c, and using the fact that in the medium
the phase speed of light is lower than the speed of the
moving charge, we can conclude that in the cross section
Sq⊥ the nonzero field is localized only in the vacuum gap.
From this position in the limit V → c, substituting ζ ¼
Vt − z and rewriting (3) for Sq⊥ we arrive atZZ

Sq⊥

∂Dz

∂ζ dS ¼ −qδðζÞ þ 1

c

Z
l1

H · dl: ð4Þ

Here the integral on the right side is calculated along the
metal surfaces of the waveguide l1 that are not covered by
the material, and Dz is the z component of the electric
displacement vector that corresponds to the Cherenkov
field. In the case where uncovered metal walls are not
present, one can see that as long as the nonzero field is
localized only in the vacuum gap, the integral on the right
side is equal to zero. Now decompose the integral on the
left side into an integral over the vacuum channel SV and an
integral over SD, the cross section of the medium,

ε0

ZZ
SV

∂EV
z

∂ζ dS ¼ −qδðζÞ þ ε0ε

ZZ
SD

∂ED
z

∂ζ dS: ð5Þ

Integration of (5) with respect to ζ, with EV
z ð−∞Þ ¼ 0 and

ED
z ð−∞Þ ¼ 0 leads to

ZZ
SV

EV
z ðζÞdS ¼ − q

ε0

Zζ

−∞
δðxÞdxþ ε

ZZ
SD

ED
z ðζÞdS: ð6Þ

If now we set ζ ¼ 0 because the flux through SD is zero,
it immediately gives

ZZ
SV

EV
z ð0ÞdS ¼ − q

2ε0
; ð7Þ

and in the case ζ ¼ 0þ a factor of 2 has to be applied.
Formula (7) gives a simple connection between the longi-
tudinal electric field in the cross section of the bunch and the

total bunch charge, which looks like a classical Gauss’s law.
Using this expression we will show that radiation losses and
transverse distribution of the electric field can be found using
the well-known technique of conformal mapping.
Cylindrical waveguide, longitudinal loss factor.—

Consider a round cross section of the metal waveguide
with an arbitrary nonuniformity along the metal walls and a
vacuum channel along the axis; see Fig. 2(a).
It is easy to show that in the case of a cylindrical

structure, if V → c then EV
z ðζÞ does not depend on trans-

verse coordinates when the particle is moving along the z
axis of a cylinder. Thus for a cylinder from (7) we have

Ec
zð0Þ ¼ − q

2πa2cε0
; Ec

zð0þÞ ¼ − q
πa2cε0

: ð8Þ

Here ac is the radius of the vacuum gap. It should be noticed
that no assumptions on the thickness of the loading con-
figuration (dielectric, corrugation, resistivity, etc.) were used
while obtaining expressions (7) and (8). Typically only the
thin layer approximation is considered in the loss factor ana-
lysis [14,16,20,21,24]. Based on the proposed approach one
can conclude that the expressions (7) and (8) are true for any
layer thickness including unbounded media as in Fig. 1(c).
Cylindrical waveguide: Kick factor.—If the beam

traverses the waveguide off axis [Fig. 2(b)], a deflecting
field will affect the beam [14–16]; if the offset distance of the
beam is relatively small, only the dipole mode of almost the
same frequency as the fundamental mode will be excited. If
the beam is deflected with a larger offset, additional multi-
poles will contribute to the dipole deflection force [16,21].
The deflecting force factor or the “kick” factor for the

cylindrical waveguide with an arbitrary slowdown layer
will be presented in this section. Consider a conformal
transformation of a circle jωj ≤ ac on a circle jψ j ≤ ac such
as that the point r0 (Arg½r0� ¼ 0) of the first circle trans-
forms into the center ψ ¼ 0 of a second circle. The
corresponding mapping is then given by

ψ ¼ a2c
ω − r0
a2c − ωr0

: ð9Þ

We consider now an integral over the vacuum gap cross
section along the ψ plane and rewrite it for the ω plane,

a a r

( )

−∞ ∞ a

FIG. 2 (color online). Cross section of the considered metal waveguides with slowdown layers (yellow): (a) cylindrical, (b) cylindrical
with displaced charge, (c) planar, and (d) square.
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Z
Ec
zdSψ ¼

Z
Ec
zJdSω: ð10Þ

Here J is the determinant of the Jacobi matrix, dSψ is the
elementary square of the ψ plane, and dSω is the surface
square element on theω plane.Using the fact that a conformal
transformation is an analytic function, one can write

J ¼
���� dFðωÞdω

����
2

¼
���� d
dω

a2c
ω − r0
a2c − ωr0

����
2

: ð11Þ

Assuming jωj ¼ r and Arg½ω� ¼ φ one can obtain

Jðr;φÞ ¼ a4cða2c − r20Þ2
½a4c þ r2r20 − 2rr0a2c cosðφÞ�2

: ð12Þ

As long as Ec
z is a constant, we can conclude from (10)

that the field distribution Edp
z over the ω plane can be found

as Edp
z ðr; r0;φÞ ¼ Jðr;φÞEc

z . Thus at the origin (r ¼ r0;
φ ¼ 0; ζ ¼ 0) the longitudinal field can be written as

Edp
z ðr0; r0; 0Þ ¼ − q

2πa2cε0

1

½1 − ðr0=acÞ2�2
; ð13Þ

which corresponds to [16]. The radial part of the Lorentz
force can be calculated using the Panofsky-Wenzel theorem
[16,23]. The force derivative at the origin, also known as
the kick factor, can be found if r ¼ r0 and φ ¼ 0. Using
(13) we obtain

κc⊥ ¼ 1

q2r0

∂Frðr; 0Þ
∂ζ

����r¼r0
ζ¼0

¼ 1

qr0

∂Ezðr; 0Þ
∂r

����r¼r0
ζ¼0

¼ 1

2πa4cε0

4

½1 − ðr0=acÞ2�3
; ð14Þ

κc⊥ ≈
2

πa4cε0
½1þ 3ðr0=acÞ2�; r0=ac ≪ 1. ð15Þ

One can see that for small offsets r0=ac ≪ 1 the first
term of the kick factor (15) is equal to the well-known result
for the kick factor of a pipe with small corrugations or
resistive walls as expected [14,16,19–21,24]. Note the
divergence of (14) at r0=ac → 1 that corresponds to the
dispersionless model of the slowdown layer. The same kick
factor divergence is observed with the mode decomposition
simulations [16,21].
Square waveguide: Longitudinal loss factor.—For a

pointlike charge moving along the symmetry axis in
between two infinitely long plates, [Fig. 2(c)] the con-
formal transformation of a strip onto the interior of a circle
allows us to obtain the longitudinal loss factor correspond-
ing to the right part of formula (2) [14,15]:

Ep
z ð0Þ ¼ − q

2a2cε0

π

16
; Ep

z ð0þÞ ¼ − q
a2cε0

π

16
: ð16Þ

At the same time, the loss factor for a loaded square
cross section metal structure [Fig. 2(d)] has not been
previously calculated and it can be obtained using the

Christoffel-Schwarz integral that gives a conformal map-
ping of the inner part of a circle jψ j < ac to a square
with each side equal to 2ac,

ω¼ 1ffiffiffi
f

p
Zψ

0

dtffiffiffiffiffiffiffiffiffiffiffi
1− t4

p ; where f¼π

2

�
Γð5

4
Þ

Γð3
4
Þ
�2

≈0.86. ð17Þ

Here ΓðxÞ is the Euler Gamma function. Taking into
account that ψ ¼ rexpðiφÞ, one can write the determinant
of a Jacobi matrix for transformation of an elementary
square as

Jðr;φÞ¼ 1

f
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðr=acÞ8−2ðr=acÞ4cosð4φÞ
p : ð18Þ

Taking into account (10) we have

Erec
z ðr;φÞ¼ Ecyl

z

Jðr;φÞ ; Erec
z ð0;φÞ¼ Ecyl

z

Jð0;φÞ¼fEcyl
z ; ð19Þ

where the right part of (18) is taken at the position of a
pointlike charge (r ¼ 0), and we have

Erec
z ð0Þ ¼ −f q

2πa2cε0
; Erec

z ð0þÞ ¼ −f q
πa2cε0

: ð20Þ

Discussion of the results.—Using (8), (16), and (20), one
can obtain an expression for the loss factors of the pointlike
charges for the cylindrical κc, planar κp, and square κsq
metal waveguides with any kind of nonuniformity or
slowdown material along the metal walls. Corresponding
formulas are presented in Table I including the kick factor
(15) for the cylindrical waveguide κc⊥. Meanwhile the wake
potentials at ζ ¼ 0þ differ from the loss factors by a factor
of 2 [1,16,23].
Formulas (2) and (3) for cylindrical and planarwaveguides

and those of Table I look identical, but we emphasize here
that (2) and (3) as derived in Refs. [14–16,18–24] used
assumptions on the particular mechanism (corrugation,
dielectric) used to form a slow wave structure while our
formulas presented in Table I were obtained in the general
case formula (7). The kick factor formula (15), Table I, was
obtained for the full solution including all multipoles, not
only dipoles. Also, at first the loss factor formula (20),
Table I, was derived here for a waveguide with the square
cross sectionmetal wall completely linedwith the slowdown
layer. This formula can be used for dielectric wakefield
acceleration or THz generation devices [2,25,27,28]. In
addition to the resistance and roughness, the waveguide
wall may have an oxide layer, which is usually a dielectric.
This effect for very short bunches was previously studied
only in a round pipe [20,24].
Loss factor determination often becomes a complicated

problem and involves massive numerical mode summa-
tions. With the new approach shown above, one can use
relatively simple and yet powerful tools for the calculation
of the asymptotical loss factors. Using the integral relation
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on the basis of the cylindrical slowdown waveguide model,
the full loss factor of the structure can be calculated. For
other cross section geometries one can obtain the loss factor
by use of a conformal mapping that allows finding the ratio
of the known loss factor for a cylindrical structure to that of
the other structure of interest. The loss factor in this case is
simply the value of the Jacobi matrix determinant at the
origin, and the Jacobi determinant away from the origin
gives the transverse structure of the loss factor.
For many practical applications, impedance boundary

conditions (IBC) or Leontovich conditions are commonly
used [1,14–16,23]. The question had arisen [29] whether
the integral relation method, formula (7), can be applied for
IBC. In [30], it was demonstrated that the IBC can be also
applied if integral relation (7) is used. It was first shown that
the theorem (7) can be derived directly from the Maxwell
equations even if (instead of the standard boundary con-
ditions) only the IBC approximation is applied. The same
approach was then extended to the solution for a dispersive
medium. Finally, wakefield calculations for the Leontovich
conditions were carried out for an arbitrary slowdown
waveguide using both the standard mode decomposition
method and the proposed integral theorem formula (7), and
were found to give identical results [30].
In conclusion,we considered theCherenkov fields and loss

factors of a pointlike electron bunch passing through wave-
guides lined with arbitrary slowdown layers. It was shown
that the Cherenkov loss factor of the short bunch does not
depend on the waveguide system material and is a constant
for any given transverse dimensions and cross sections of the
waveguides. The exact matching of the loss factor of the
beams passing through various types of waveguides was
analyzed. It was shown that with the proposed approach one
can use a relatively simple method for the calculation of the
total loss factor using an integral relation based on the
cylindrical slowdown waveguide model.
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