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For many years, the apparent absence of a phase instability has characterized lasers as peculiar nonlinear
oscillators. We show that this unusual feature is solely due to the approximations used in writing the
standard models. A new, careful derivation of the fundamental equations, based on codimension 2
bifurcation theory, shows the possible existence of dynamical regimes displaying either a pure phase
instability, or mixed phase-amplitude turbulence. A comparison to existing experimental results
convincingly shows that the Benjamin-Feir instability, common to all nonlinear wave problems, is a
fundamental, satisfactory interpretation for their deterministic multimode dynamics.
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The phase instability is a generic driving mechanism for
spatiotemporal complexity, first discovered in fluid dynam-
ics a few decades ago [1]. It is a universal mechanism which
is to be expected whenever waves are present, irrespective
of the physics domain under study. In nonlinear optics this
instability is better known under the name of modulational
instability and appears mainly in the description of pulse
formation in optical fibers [2].
Quite surprisingly, the phase instability has never been

invoked in modeling the complex spatiotemporal behavior
observed in semiconductor lasers. Indeed, up until recently
lasers had been considered by the nonlinear physics
community as somewhat anomalous (nonlinear) oscillators,
given their apparent constant emission frequency for all
field strength values [3] and, notably, the absence of a
phase-unstable regime of operation.
Complex dynamics has been known, although not nec-

essarily recognized as such, since the early observations of
laser emission. In particular, the light output by semicon-
ductor lasers has been recognized as being particulary
noisy and extensive studies were conducted mainly in the
1980s. Given the multimode nature of semiconductor lasers
(i.e., emission on different optical frequencies), two main,
noise-driven regimes of operations were identified, charac-
terized by irregular longitudinal mode switching [4–6]:
(i) mode partition, where the total laser power fluctuates
among several coexisting longitudinal modes [7,8],
and (ii) mode hopping, where only one mode at a time is
emitting [8,9].
When the issue of the multimode dynamics appeared to

be settled, an unusual multimode regime was experimen-
tally reported [10,11] in “short wavelength” (λ ≈ 850 nm)
multiple-quantum-well semiconductor lasers. Its dynamics
was characterized by a regular modal alternating with
periodic oscillation of the optical frequency among a
few adjacent modes: the intensity of each mode vanished
regularly while keeping the sum of the intensities constant,
thanks to an appropriate lag between alternating modes.

Similar experimental results, though less clearly interpret-
able, had been obtained in “long-wavelength” lasers
(λ ≈ 1.3 μm) [12] and even more complex dynamics has
since been observed in multimode quantum dot lasers [13].
The most striking point of these observations is the occur-
rence of a regular modal dynamics devoid of the amplitude
modulation which was customarily associated with modal
jumps [8,9].
Phenomenological modeling for this new dynamical

regime was proposed by introducing mode coupling
through nonlinear mechanisms [10,14] or through noise
[15]. Subsequently, a model based on a Ginzburg-Landau
equation proposed a more fundamental description [16] but
its predictions have been shown to be nothing else but
extremely long transients [17].
Here, thanks to a codimension 2 bifurcation analysis

[18,19] of the fundamental equations governing multimode
dynamics for a semiconductor laser near its threshold, we
prove the existence of pure phase instability (characterized
by a periodic oscillation of the optical frequency and a
constant intensity) as well as of mixed phase-amplitude
turbulence regimes. We thus provide a fundamental, alter-
native satisfactory interpretation of the deterministic multi-
mode dynamics observed in some semiconductor lasers.
The main features of our model [3,20] can be summa-

rized as follows. The electric field E, polarized along x and
propagating along z, satisfies

∂ttEþ 1

ϵ0
∂ttP ¼ c2∂zzE − σ∂tE; ð1Þ

where Pðt; zÞ is the dielectric polarization, ϵ0 and c are the
dielectric constant and the speed of light in vacuum, respec-
tively, and σ represents losses. The carrier density obeys

∂tN ¼ γðNp − NÞ þD∂zzN þ 2

ℏωc
E∂tP; ð2Þ
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where γ is the carrier’s relaxation constant, Np the pump
parameter,D the diffusion constant, ℏ Planck’s constant, and
ωc is the oscillation frequency. The Fourier transforms of E
and P are related through the susceptibility χðω; NÞ:

bPðωÞ ¼ ϵ0χðω; NÞbEðωÞ: ð3Þ
Close to transparency (obtained for Np ¼ Npc), three

independent slow characteristic time scales appear and are
associated with (i) the electric field amplitude growth rate
(related to the distance ΔN¼Np−Npc from transparency),
(ii) the population inversion time constant (γ−1), and
(iii) Γ−1 ∝ ð∂χ=∂ωÞjωc;Npc

which characterizes the suscept-
ibility’s frequency dependence near resonance.
Looking for a solution for Eq. (1) of the form E ¼ eλteikz

in the neighborhood of transparency (i.e., for small variations
dN, dλ, and dk) and setting N ¼ Npc þ dN, λ ¼ iωc þ dλ,
k ¼ kc þ dk, we obtain

dλ
ωc

�
2ið1þ χÞ þ iωc

∂χ
∂ωþ σ

ωc

�
¼ Npc

∂χ
∂N

dN
Npc

− 2
c2k2c
ω2
c

dk
kc

;

ð4Þ

where we have dropped ωc and Npc from the functional
dependence, thereby replacing χðωc; NpcÞ, ð∂χ=∂NÞjωc;Npc

,
…, with χ, ∂χ=∂N, …. Then, taking into account
the smallness of following experimentally determined
parameters

γ
ωc
≃ 10−6; Γ

ωc
≃ 10−3 Dk2c

ωc
≃ 10−3; σ

ωc
≃ 10−3; ð5Þ

we can rewrite

dλ
ωc

∝
�
Γ
ωc

�
dN
Npc

;
dk
kc

∝
dN
Npc

: ð6Þ

The scaling law for the electric field amplitude can be
estimated from Eq. (2) by neglecting the diffusion term
for the population, considering equilibrium, and extracting a
relation between N and E:

γðNp −NÞ ∝ 2

ℏωc
E∂tP⇒ E2 ∝

ℏωcNpc
ϵ0

�
γ

σ

�1
2

�
dN
Npc

�1
2

:

ð7Þ

While the usual procedures to reduce the dynamics take
full advantage of the large separation between these time
scales to perform the adiabatic elimination of the fast
variables [21], here we adopt the diametrically opposite, but
nevertheless well-established [18,19], point of view: upon
approaching the laser transparency we seek to slow down
the electric field envelope dynamics (controlled by
dN=Npc) until it becomes as slow as that of the population
inversion (controlled by γ=ωc). As usual for codimension 2
analysis, there is no rigorous, fully satisfactory way of
choosing the exponent (x > 0) which measures the ratio

between the two characteristic times ðdN=NpcÞ ¼ ðγ=ωcÞx.
Several values of x are possible, each leading to a slightly
different result. However, the terms appearing in the final
envelope equations are always the same, the differences
among expansions being limited to the rank in smallness
parameter occupied by each term: physical relevance
determines which terms ought to be retained. A full
discussion of these technical details will be offered in a
forthcoming publication [20], where we investigate the
influence of x and compare several choices for its value.
Here, as a good compromise between the accuracy and
computing effort, we adopt x ¼ 1=2.
The following scalings and definitions are now introduced:

γ ¼ ωcϵ
2 definition of ϵ;

Np ¼ Npcð1þ ~μϵÞ with ~μ≃Oð1Þ;
σ ¼ ωcϵ ~σ ⇒ χi ¼

σ

ωc
¼ ϵ ~σ;

Γ ¼ ωcϵ ~Γ;

D ¼ ϵ
ωc

k2c
~D; ð8Þ

with

N ¼ Npcð1þ ϵ1Sþ ϵ2N2 þ � � �Þ;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcNpcℏ

ϵ0

s
ðϵ1E1 þ ϵ2E2 þ � � �Þ;

P ¼ ϵ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcNpcℏ

ϵ0

s
ðϵ1P1 þ ϵ2P2 þ � � �Þ; ð9Þ

and

∂t ¼ ωc

0
B@∂t0 þ ϵ2∂t2 þ ϵ3∂t3 þ ϵ4∂t4 þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϵ2∂T

1
CA;

∂z ¼ kc

0
B@∂z0 þ ϵ1∂z1 þ ϵ2∂z2 þ ϵ3∂z3 þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϵ∂Z

1
CA: ð10Þ

We also introduce the dimensionless partial derivatives

ωc
∂χ
∂ω

����
ωc;N

¼ χωðNÞ
ϵ

; ω2
c
∂2χ

∂ω2

����
ωc;N

¼ χωωðNÞ
ϵ2

; ð11Þ

so that χωðNÞ and χωωðNÞ are now of order 1.
The previous expansions are solutions of Eqs. (1), (2),

and (3) up to Oðϵ3Þ provided that

∂TF ¼ −V∂ZF þ c0SF þ ϵc1∂ZZF þ ϵc2S∂ZF; ð12aÞ

∂TS ¼ ~μ − S − 4~σjFj2; ð12bÞ
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where

c0 ¼
Npc

∂χi∂N
χω

ð1 − iαÞ; V ¼ 2c2k2c
ω2
cχω

;

c1 ¼
−V2χiωω
2χω

ð1 − iβÞ; c2 ¼
−iχωωVc0

χω
þ NpcV

∂χω∂N
χω

;

ð13Þ
with Refc0g and Refc1g > 0 (by construction),
α ¼ ð∂χr=∂NÞ=ð∂χi=∂NÞ is the usual alpha factor and β
a new, real function defined as

β ¼ χω
Vχiωω

�
χrωωV
χω

− 1

�
: ð14Þ

Eq. (12a) contains not only the usual slowly varying
envelop terms for class B semiconductor lasers [22,23],
but also additional smaller new terms. The term containing
the complex coefficient c1 represents diffusion (as in [16])
but also dispersion of the electric field, while the one
containing c2 describes group velocity and wave vector
renormalizations associated with the distance from the
threshold.
We examine the stability of the spatially homogeneous

solution (S ¼ 0, F ¼ ffiffiffiffiffiffiffiffiffiffi
~μ=4~σ

p
)—i.e., the monochromatic

solution selected by the gain at the threshold—looking at its
critical eigenvalue (λϕ) associated with the time translation
invariance symmetry. This eigenvalue can be shown to be
expandable in power of k as

λϕ ¼ ½l2k2 þ l4k4 þOðk6Þ� þ i½−VkþOðk5Þ�; ð15Þ
with

l2 ¼ −ϵ
c0rc1r þ c0ic1i

c0r
; ¼ −ϵc1rð1þ αβÞ;

l4 ¼ −ϵ2
c21iðc20r þ c20iÞ

2c30rμ
≤ 0: ð16Þ

We make the following remarks. (i) l4 < 0, thus the small
scales are damped. (ii) l2 is the usual Benjamin-Feir phase
instability control parameter [1]. l2 < 0 corresponds to the
stability of the single mode solution, while l2 > 0 yields a
phase-unstable regime with possible cyclic oscillations in the
optical frequency (as observed in [10–13]). (iii) The crucial
difference between Eq. (12) and those of [16] lies in the
existence of c1i. Indeed, if c1i ¼ 0 the leading term in
Refλϕg < 0 and themonochromatic solution remains stable,
as in [16], although long transients (λϕ ∝ ðϵ=L2Þ, L laser
length) may be mistaken for multimode dynamics [17].
(iv) l2 > 0 if β < −1=α < 0; thus, the instability is con-
trolled by ðc1i=c1rÞ rather than jc1j (small). (v)When l2 < 0,
max fRefλϕgg for k2max ≃ −ðl2=2l4Þ, which, substituted into
ImðλϕÞ, gives a periodic oscillation of the optical frequency
at Ω≃ Vkmax. Since l2 can approach zero, there is no lower
bound for the oscillation frequencyΩ and the cyclic changes

in laser frequency can be as slow as desired. This feature
closely matches the experimental observations, since the
frequencies with which the lasing modes cycle [10,11] are at
least 3 orders of magnitude smaller than the inherent
oscillation frequencies typical of semiconductor lasers. As
such, this observation was one of the most striking character-
istics of the experimental findings [10,11] and one which
was most difficult to interpret physically.
In order to estimate realistic physical values for β,

thereby assessing the possibilities for l2 > 0, we consider
the analytical approximation for the susceptibility in
multiple-quantum-well lasers [24]

χðω;NÞ¼−χ0
�
2 log

�
1−

v
u− i

�
− log

�
1−

b
u− i

��
; ð17Þ

where χ0 is constant, v ¼ ðN=NpcÞ, and u ¼
½(ω − ðEt=ℏÞ)=Γ�. Band-gap renormalization effects due
to the screened Coulomb interaction between electrons and
holes can be taken into account by renormalizing the
transition energy Et,

EtðNÞ ¼ ℏωc − aNb ⇒ u ¼ ω − ωc

Γ
þ ps

�
N
Npc

�
b
; ð18Þ

where ps ¼ ðaNb
pc=ℏΓÞ is the band-gap shrinkage parameter

[24]. The coefficients a and b are material dependent and
can be experimentally determined from [25,26]. In Fig. 1
we plot ð1þ αβÞ (∝ l2) vs normalized losses ~σ (equivalent to
changing transparency Npc). In the absence of band-gap
renormalization ð1þ αβÞ > 0; thus, l2 < 0 for any reason-
able value of normalized losses (solid line), while the band-
gap renormalization (dashed and dash-dotted lines, cf.
caption) may lead to a phase-unstable regime, thus proving
that the phase instability is physically accessible and offering
a viable interpretation for the experiments [10–13].
Other approximate properties of Eq. (12) may be inferred

from the comparison with the complex Ginzburg Landau
equation (CGLE), for which a vast literature exists [27].

FIG. 1. Benjamin-Feir stability boundary vs ~σ. The suscep-
tibility is taken as in [24], without (solid line) and with a band-gap
renormalization estimated from the experimental measurements
of [25] (dashed line) or [26] (dash-dotted line).
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In the CGLE, the phase instability appears either as pure
phase turbulence or as a mixture of phase and amplitude
turbulence [28]. Although the phase gradients are strongly
fluctuating in both cases, in the former the amplitude is
almost constant, while in the latter its dynamics is also
turbulent. For comparison with the CGLE, even though not
entirely justifiable, we perform the standard adiabatic
elimination of S (setting S≃ ~μ − 4~σjFj2 and substituting
into the electric field equation), obtaining

∂TF≃ c0 ~μF − V∂ZF − 4~σc0jFj2F þ ϵc1∂ZZF þ � � � :
ð19Þ

By analogy, we then expect (i) a pure phase-unstable regime
for small c0i=c0r and large c1i=c1r, and (ii) an amplitude
turbulent regime for large c0i=c0r and small c1i=c1r. In
the pure phase-unstable regime, where the amplitude dynam-
ics is enslaved to that of the phase gradients, the adiabatic
elimination of the amplitude leads to the well-known
Kuramoto-Sivashinsky phase equation [27] for which the
number of positive Lyapunov exponents is shown to linearly
increase with the system’s size [29]. Thus, we expect the
phase instability to act as an intrinsic noise generator for the
laser’s electric field amplitude.
The numerical simulations of Eq. (12) are performed

with a standard fourth order Runge-Kutta algorithm in time
and a sixth order finite-difference method to approximate
the spatial derivatives. Varying the space and time incre-
ments, we have carefully checked that numerical noise does
not qualitatively affect our predictions. The simulations are
performed, as usual, with periodic boundary conditions
(unidirectional cavity), rather than with the Fabry-Perot
configuration used in the experiments [10–13].
Given the long relaxation time scales expected from the

phase dynamics, in order to ensure convergence in the
simulations, we first explore the phase-stable regime. For
the parameter values of Fig. 4(a), the slowest phase gradient
decay rate is λϕð2π=LÞ ∼ 3 × 10−6. Thus, we expect, and
do observe, that the initial phase gradients vanish after a
characteristic time τ ∼ 106. On the basis of this result, in the
following figures we only show predictions obtained in the
asymptotic regime.
By analogy with the CGLE, we associate the numerical

observations of Fig. 2 with an amplitude turbulence regime,
where not only the phase gradients but also the amplitude
strongly fluctuate in space and time. The associated power
spectrum is shown in Fig. 4(d). This parameter regime
should correspond to the experimental observations
obtained far from threshold, where no particular modal
sequence was observed and where the total intensity
oscillates irregularly [30].
Figure 3 has been numerically obtained in the pure

phase-unstable regime (small α, large β). The electric field
frequency displays regular variations with asymmetric
periodic cycling. Only a few modes are involved in the
dynamics [Fig. 4(c)] and the total intensity is nearly

constant. These predictions are in very good qualitative
agreement with the experimental observations of determin-
istic mode switching [11], with a discrepancy in the
intensity bandwidth: in the experiment the intermode
beatings—if present—could not be detected, while in
our calculations they are truly absent.
Finally, we have simulated Eq. (12) in a phase-stable

regime but with the addition of white noise in space
and time uniformly distributed between �ζ

ffiffiffiffiffi
dt

p
where dt

is the time increment and ζ ¼ 4 × 10−3. The aim is to
compare the effect of externally injected noise to the action
of the phase instability. Although the latter involves a
much narrower frequency range, they both produce multi-
mode dynamics with somewhat differing spectral features
[Figs. 4(b) and 4(c)].

|F| Re(F)

FIG. 2. Numerical simulation of Eq. (12) in the amplitude turbu-
lence regime. Some parameters are common to all our simulations:
μ ¼ 0.1, σ ¼ 2, D ¼ 1, χr ¼ 3. Specific to this simulation, the
length L of the numerical box is 512, c0 ¼ 0.0050þ i0.0065,
c1 ¼ 0.25 − i0.225, and c2 ¼ −i2.5006. The continuous line
stands for the amplitude evolution with time, at a fixed spatial
position, the dashed one for the real part of F versus time. The
dynamics is clearly turbulent.

FIG. 3 (color online). Numerical simulation of Eq. (12) in the
pure phase-unstable regime with c0 ¼ 0.0125þ i0.0025, c1 ¼
1.1955 − i11.9552, and c2 ¼ −i2.5006. The length L of the
numerical box is 119.3984. The top line (black online) represents
the temporal evolution of the field amplitude, at a fixed spatial
position, the bottom line (red online) the time derivative of the
phase of F [i.e., Im½ðF�∂tFÞ=ðjFj2Þ�]. As observed experimen-
tally, the total intensity is constant and the electric field frequency
oscillation is not symmetric.
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A physical interpretation for the meaning of the
new β factor can be given by extracting the sign-changing
parentheses in Eq. (14) and recasting it as β ∝ ½ð2c2k2c=ω2

cÞ
(ð∂2χrÞ=ð∂ω2Þ)=ð∂χ=∂ωÞ2 − 1�, where we have explicitly
written the derivatives, for clarity. For α > 0, the common
regime, a necessary (but not sufficient) condition for β < 0 is
ð∂2χr=∂ω2Þ < ðω2

c=2c2k2cÞð∂χ=∂ωÞ2. Thus, the phase insta-
bility condition depends on the functional dependence of the
refractive index with frequency, relating it to an anomalous
dispersion regime or, analogously, to the self-focusing non-
linearity [31]. Since band-gap renormalization hardly affects
β [20], a measurement of this parameter can be conducted
(e.g., with ellipsometry or pump-probe experiments) practi-
cally at any injection level.
In conclusion, by computing the normal form description

of a semiconductor laser bifurcation near its threshold,
we have obtained a general model from which we deduce
the existence of a new parameter β, proven, both analytically
and numerically, to play a crucial role—in conjunction with
the well-known α parameter—in the control of the phase
instability. Our numerical simulations, predicting (asymmet-
ric) periodic oscillations in the laser frequency as well as
amplitude turbulent dynamics, are in good qualitative agree-
ment with the experimental observations. Even though
material-related andphotonnoise sources are always present,
and can even be strong in semiconductor devices, our results
show that in the phase-unstable regime these external noise
components may only be an additional accessory which
superposes some secondary randomness onto a regular or
irregular, but still deterministic, behavior. Further work is
needed to satisfactorily address this question.

We are grateful to two anonymous referees for con-
structing criticism which has allowed us to substantially
improve this paper.
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FIG. 4. Typical power spectra of F in log-linear scales obtained
from the integration of Eq. (12). (a) Phase-stable regime with no
added noise (aside from that of the numerical scheme):
c0 ¼ 0.01255þ i0.0025, c1 ¼ 1.1955, c2 ¼ 0. (b) White noise
added on space and time in the regime shown in (a). (c) and (d)
Phase-unstable regime (no added noise)—(c) corresponds to the
pure phase instability (cf. Fig. 3) and (d) to amplitude turbulence
(cf. Fig. 2). The horizontal scale in panel (d) is approximately
10 times larger than that of the other three panels.
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