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It has been claimed that the electroweak vacuum may be unstable during inflation due to large
fluctuations of the order H in the case of a high inflationary scale as suggested by BICEP2. We compute
the standard model Higgs effective potential including UV-induced curvature corrections at one-loop level.
We find that for a high inflationary scale a large curvature mass is generated due to renormalization
group running of nonminimal coupling ξ, which either stabilizes the potential against fluctuations for
ξEW ≳ 6 × 10−2, or destabilizes it for ξEW ≲ 2 × 10−2 when the generated curvature mass is negative. Only
in the narrow intermediate region may the effect of the curvature mass be significantly smaller.
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After the confirmed detection of the standard model
(SM) Higgs boson, a substantial amount of work has been
devoted to investigating its ramifications in the early
Universe. The measured Higgs mass mH ∼ 125 GeV lies
in the range where no new physics between the electroweak
scale and inflation is necessarily required by theoretical
self-consistency [1–3]. However, if primordial gravitational
waves possibly suggested by BICEP2 data [4] would be
detected, the implied high inflationary scaleH ≫ 109 GeV
has been argued to be in tension with the pure SM
Higgs [5,6].
According to the effective potential computed in

Minkowski space, the SM vacuum is separated from the
unstable false vacuum by a barrier of height V1=4

max ∼
109 GeV [2]. If H ≫ 109 GeV, the inflationary fluctua-
tions of the effectively massless Higgs field immediately
trigger a transition to the false vacuum as the probability
density at the barrier scales as P ∼ expð−8π2Vmax=3H4Þ
[5,6]. Within the standard model it would therefore appear
rather unlikely that our observable patch of the Universe
would have survived in the SM vacuum for the observa-
tionally requiredN ∼ 60 e-folds of inflation. Stabilizing the
SM vacuum against inflationary fluctuations, V1=4

max ≳H,
would require either a low top mass at least two sigma
below the best fit value or new physics modifying the Higgs
potential above the electroweak scale [5,6].
The conclusion however relies on the effective potential

computed in Minkowski space and one should ask if the
effects of curvature can be neglected during inflation.
Indeed, treating the SM fields as test fields in a de Sitter
background, the Higgs sector acquires a nonminimal
coupling to gravity ξðμÞRΦ†Φ through loop corrections
even if ξ ¼ 0 at tree level [7]. This effect and other
curvature corrections could play a significant role under
a high scale inflation where R ¼ 12H2 would be much

larger than the (Minkowski) instability scale. In a tree-level
analysis in [5] it was indeed found that the generated
curvature mass stabilizes the SM vacuum during inflation
for ξ≳ 10−1; however, loop corrections in the curved
background space and the renormalization group (RG)
running of the ξ-coupling were not addressed.
Ultimately, the quantity of interest is the transition rate or

probability from the EW vacuum to the unstable false
vacuum. In order to compute it reliably, one should track
the evolution of the Higgs fluctuations during inflation,
which can be done for example by the stochastic Fokker-
Planck (FP) equation (cf. Ref. [8]). Clearly, curvature-
induced corrections by large IR fluctuations in de Sitter
space are already accounted for by the FP equation,
whereas the UV effects such as RG running of couplings
are not reproduced, and hence must be incorporated
directly in the input potential.
Therefore, it appears that a reliable approximation

scheme would be to incorporate the UV-induced curvature
corrections (arising from the UV part of the loop integrals)
in the input effective potential, whereas the IR effects
would be accounted for by the FP evolution equation
itself.
In this work we compute the RG improved effective

potential of the Standard Model Higgs in de Sitter space
consistently accounting for the UV-induced curvature
corrections and their RG running with the measured best
fit values of SM parameters at the EW scale as the input.
We treat the SM fields as test fields in a fixed inflationary
background space assuming inflation is driven by new
physics not directly coupled to SM. The renormalization
procedure is therefore not hampered by ambiguities of the
gravitational sector as for example in the Higgs inflation
[9]. We find that for a high inflationary scale the curvature
corrections are generally significant and either stabilize or
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destabilize the potential against inflationary fluctuations,
depending on the value of ξ-coupling at the EW scale.
Derivation of the effective action in curved background

has been extensively studied in the literature [10]. Here
we use the resummed heat kernel expansion method [11]
which incorporates complete UV contributions from the
loop integrals at one-loop level. Unlike typically in the
literature [10], we do not treat the curvature scale R as a
small expansion parameter, allowing us to consider the
case where R is larger than the tree-level masses of the
standard model particles. Moreover, we fully incorporate
RG improvement on top of the one-loop effective potential
to lift the dependence on the renormalization scale, which is
crucially important considering the large hierarchy between
the EW and inflationary scales. This provides a significant
improvement over the RG improved tree-level potential,
for which the renormalization scale dependence is not
canceling up to one-loop level.
Using this method, we find for the standard model one-

loop effective potential in de Sitter space improved by one-
loop RG equations in the ’t Hooft–Landau gauge and the
MS scheme [12]

Veff ¼ −
1

2
m2ðtÞϕ2ðtÞ þ 1

2
ξðtÞRϕ2ðtÞ þ 1

4
λðtÞϕ4ðtÞ

þ
X9

i¼1

ni
64π2

M4
i ðϕÞ

�
log

jM2
i ðϕÞj
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�
; ð1Þ

with

M2
i ðϕÞ ¼ κiϕ

2ðtÞ − κ0i þ θiR; ð2Þ

where the coefficients ni, κi, κ0i, and θi for various
contributions are given by Table I. The parameters λðtÞ
and mðtÞ are the SM quartic coupling and mass, whereas
gðtÞ, g0ðtÞ, and ytðtÞ are the SU(2), U(1), and top Yukawa
couplings respectively, while ξðtÞ is the Higgs nonminimal
coupling to gravity [13]. All of them are running with
renormalization group equations (RGE). The running of the
Higgs field is given by

ϕðtÞ ¼ ZðtÞϕc; ZðtÞ ¼ exp

�
−
Z

t

0

dt0γðt0Þ
�
; ð3Þ

where ϕc is the classical field and γðtÞ is the Higgs field
anomalous dimension. The scale μðtÞ is related to the
running parameter by

μðtÞ ¼ mtet; ð4Þ

where we have set the fixed scale at t ¼ 0 equal to physical
top quark mass mt. A direct comparison with the flat space
results [14,15] shows that in this approximation spacetime
curvature modifies the form of the effective potential only
by shifting the effective masses by gravitational contribu-
tions proportional to R. We present more detailed deriva-
tion of the effective potential (1) elsewhere [16]. For
example, a generic gauge field contribution in arbitrary
curved spacetime is given by
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with ðM2
gÞμν ¼ M2

sδ
μ
ν þ Rμ

ν, M2
s ¼ m2 − R=6, where m2 is

the gauge boson mass term in the quadratic action and
logð~μ2Þ≡ logð4πμ2Þ þ 2=ð4 − dÞ − γE contains the dimen-
sional pole in the limit d → 4. The relevant terms in the
potential (1) are then found by computing the trace over
spacetime indices using de Sitter space expression for the
Ricci tensor,

R ¼ 12H2; ð6Þ

with Rμ
ν ¼ δμνR=4.

The RG running is determined by the one-loop β- and
γ-functions and the boundary conditions at the EW scale.
At one-loop level the nonminimal gravity coupling ξ does
not couple into the β-functions of the SM couplings, which
are therefore given by their usual expressions with next-to-
leading order boundary conditions (cf. [3,14]), resulting in
the standard one-loop running as shown in Fig. 1. The
β-function for the nonminimal coupling ξ scales as βm2 [17]
and is given by [18]

16π2βξ ¼
�
ξ −

1

6

��
12λþ 6y2t −

3

2
g02 −

9

2
g2
�
: ð7Þ

It can be directly integrated by using the solutions for the
running SM couplings to get

ξðtÞ ¼ 1

6
þ
�
ξEW −

1

6

�
ΞðtÞ; ð8Þ

TABLE I. Contributions to the effective potential (1) from W�,
Z0, top quark t, Higgs ϕ, and the Goldstone bosons χ1;2;3.

Φ i ni κi κ0i θi ci

1 2 g2=4 0 1=12 3=2
W� 2 6 g2=4 0 1=12 5=6

3 −2 g2=4 0 −1=6 3=2
4 1 ðg2 þ g02Þ=4 0 1=12 3=2

Z0 5 3 ðg2 þ g02Þ=4 0 1=12 5=6
6 −1 ðg2 þ g02Þ=4 0 −1=6 3=2

t 7 −12 y2t =2 0 1=12 3=2
ϕ 8 1 3λ m2 ξ − 1=6 3=2
χi 9 3 λ m2 ξ − 1=6 3=2
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where ΞðtÞ is shown in Fig. 1 and ξEW ≡ ξðmtÞ is the initial
value at the electroweak scale.
The potential (1) is renormalization scale μðtÞ invariant,

if the derivative dVeff=dt vanishes. By direct computation
we get

dVeff

dt
¼ ϕ4

�
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4
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16π2

�
þ � � � ; ð9Þ

where the higher order contributions are neglected. Using
the one-loop β- and γ-functions for the SM couplings
(cf. [3]) and Eq. (7) we explicitly find that each parenthesis
in (9) vanishes and therefore the potential (1) is indeed
renormalization scale invariant up to higher loop
corrections.
The optimum scale μ�, where the neglected higher order

corrections have the smallest impact on the observables,
turns out to be a certain average of the masses M2

i ðϕÞ such
that the logarithms in (1) do not result in large corrections.
In the case of flat spacetime, R ¼ 0, it can be shown [14]
that μ ¼ ϕ is a good choice resulting in small corrections to

the optimal choice. Based on this consideration, we now
make a choice of the scale μ in the presence of curvature
corrections as

μ2 ¼ ϕ2 þ R; ð10Þ

for which the corrections compared to the optimal choice
are expected to be small [20].
Once the running couplings are solved, the potential

can be plotted by choosing the renormalization scale as in
Eq. (10). The Minkowski potential, corresponding to
R ¼ 0, is shown in the upper panel of Fig. 2, where the
scale of the maximum is given by

Λ̄max ≃ 6 × 107 GeV; V̄1=4
max ≃ 9 × 106 GeV; ð11Þ

where the bar on top of the symbol indicates quantities
calculated from the Minkowski potential. With these
values, inflationary fluctuations would be able to overcome
the potential barrier if H ≳ 107 GeV, rendering the physi-
cal vacuum unstable. At two-loop level the barrier is higher
[2,3], V̄1=4

max ∼ 109 GeV, but the instability remains,
although it requires a higher inflationary scale H.
The full effective potential (1) for a particular choice

H ¼ 1010 GeV and ξEW ¼ 0.1 of the free parameters,
for which we find Λmax ≃ 6 × 1010 GeV and V1=4

max≃
2 × 1010 GeV, is shown in the lower panel of Fig. 2.
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FIG. 1 (color online). RGE running of the SM
couplings g3, yt, g, g0, λ, and the nonminimal gravity coupling
Ξ≡ ðξ − 1=6Þ=ðξEW − 1=6Þ.
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FIG. 2 (color online). The Higgs effective potential without
(top) and with (bottom) curvature corrections for H ¼ 1010 GeV
and ξEW ¼ 0.1. The dashed lines correspond to the approxima-
tion in Eqs. (12–13) for the maximum.
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We find that the scale of the maximum is orders of
magnitude higher than the prediction of the Minkowski
potential due to large effective curvature mass.
A reasonable order of magnitude estimate for the

maximum of the potential at scales H ≫ Λ̄max ∼
108 GeV can be obtained by fixing μ ¼ R1=2 ¼ 121=2H,
since the running couplings evolve mildly for
μ≳ 108 GeV,

Λmax ≃
�
12ξR
jλRj

�
1=2

H ≳ ð103ξRÞ1=2H; ð12Þ

V1=4
max ≃ ð6ξRÞ1=2

jλRj1=4
H ≳ 10ξ1=2R H; ð13Þ

where we denote ξR ≡ ξðR1=2Þ and similarly for λR and we
have used jλRj≲ 10−2. Using Eqs. (13) and (8) we then find
that the criterion for stability,

V1=4
max ≳H; ð14Þ

can be solved for ξEW to get

ξEW ≳ 1

6ΞR
ðjλRj1=2 þ ΞR − 1Þ ∼ 10−2; ð15Þ

where ΞR ≡ ΞðR1=2Þ ¼ 1.15−1.20 for H ≫ 108 GeV. We
show the stability region given by Eq. (15) as blue in Fig. 4.
On the other hand, for small enough ξEW we find that

ξðμÞ is running negative such that the negative curvature
mass term ξRϕ2=2 dominates the potential (1) at high scales
if H ≫ Λ̄max. For example, for ξEW ¼ 0 the unstable
potential is shown in Fig. 3. The condition for ξEW to yield
unstable potential during inflation forH ≫ Λ̄max is given by

ξEW ≲ 1

6ΞI

�
ΞI − 1 −

jλIjΛ̄2
max

4H2

�
∼ 10−2; ð16Þ

where we denote ΞI ≡ ΞðΛ̄maxÞ and similarly for λI. The
corresponding region where the EW vacuum is unstable
from the onset of inflation is shown as red in Fig. 4.

The intermediate region between I and II in Fig. 4 is
relatively narrow and requires fine-tuning for the non-
minimal coupling ξ at the EW scale. This is because
ξ is running away from the conformal point ξc ¼ 1=6
by a factor of 1.15–1.20 (see Fig. 1), and therefore without
fine-tuning jξðμÞj is typically of order 10−2 or larger at high
scales. The curvature corrections may be important in this
region as well; however, further investigation is required for
a conclusive survey.
In conclusion, we find that for a high inflationary

scale H ≫ Λ̄max ∼ 108 GeV the UV-induced (subhorizon)
curvature corrections alter the SM Higgs effective potential
significantly during inflation. In particular, for ξEW≳
6 × 10−2 a large curvature mass stabilizes the potential
against fluctuations of order H, while for ξEW ≲ 2 × 10−2

the resulting curvature mass is negative such that the EW
vacuum is unstable from the onset of inflation. These
results are in agreement with the tree-level analysis in [5]
where the stability bound was found to be ξ≳ 10−1. We
will examine the vacuum transition rate and the implica-
tions on cosmology in more detail elsewhere [16]. We
stress however that the exponential suppression of any
fluctuation probability P ∼ expð−Vmax=H4Þ makes the
stability of the regime V1=4

max ≳H a robust statement.
Finally, we note that higher loop corrections may alter

these quantitative estimates considerably. For example, the
flat space instability scale Λ̄max ∼ 1011 GeV from the next-
to-next-to-leading order calculation [2,3] is roughly three
orders of magnitude higher than in the present one-loop
calculation. However, we expect that our qualitative results
persist.
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FIG. 3 (color online). The Higgs effective potential including
curvature corrections with H ¼ 1010 GeV and ξEW ¼ 0.
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