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We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional
supergravity. It is regular on and outside an event horizon of lens-space topology Lð2; 1Þ. It is the first
example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a
charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the
horizon, with one constraint relating these.
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A fundamental result in the theory of black holes is
Hawking’s horizon topology theorem [1]. It shows that for
asymptotically flat, stationary black holes satisfying the
dominant energy condition, cross sections of the event
horizon must be topologically S2. It has been known for
over a decade that black holes in higher dimensions are
not so constrained. In five dimensions, an explicit example
of an asymptotically flat black hole with horizon topology
S1 × S2—a black ring—was presented [2]. In conjunction
with the S3 topology Myers-Perry black hole, this explicitly
demonstrated black hole nonuniqueness in five-dimensional
vacuum gravity [3].
Hawking’s horizon topology theorem was subsequently

generalized to higher dimensions, revealing a weaker con-
straint on the topology, namely, cross sections of the horizon
must have a positive Yamabe invariant [4]. However, it is
unclear whether every topology allowed by this theorem is
actually realized by a black hole solution. So far, the black
ring is the only nonspherical example known with a
connected horizon, although it is believed many other types
exist [5,6].
In five dimensions, the positive Yamabe condition allows

for S3; S1 × S2, quotients of S3 by a discrete subgroup,
and connected sums of these. In the context of stationary
solutions with Uð1Þ2 rotational symmetry, it has been
shown that the possible topologies are further constrained
to be one of S3; S1 × S2, or Lðp; qÞwhere Lðp; qÞ ≅ S3=Zp
is a lens space [7]. The former two topologies are, of
course, already realized by the Myers-Perry solutions and
black rings. There have been various attempts at finding an
asymptotically flat black hole solution with lens-space
horizon topology—a black lens—to the vacuum Einstein
equations, although they have all resulted in solutions with
naked singularities [8,9].
In this note we show that black lenses do in fact exist, by

writing down a simple supersymmetric, asymptotically flat,

black lens solution to five-dimensional minimal super-
gravity. Specifically, we construct an example that is
regular on and outside an event horizon with lens-space
topology Lð2; 1Þ ≅ RP3 ≅ S3=Z2.
The bosonic content of five-dimensional minimal

supergravity is a metric g and a Maxwell field F. The
general form for supersymmetric solution was found
in [10],

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð1Þ

where V ¼ ∂=∂t is the supersymmetric Killing vector field,
ds2M is a hyper-Kähler base, and f;ω are a function and
1-form on the base M. We will choose the base to be a
Gibbons-Hawking space,

ds2M ¼ H−1ðdψ þ χidxiÞ2 þHdxidxi; ð2Þ

where xi; i ¼ 1; 2; 3, are Cartesian coordinates on R3, the
function H is harmonic on R3, and χ is a 1-form on R3

satisfying ⋆3dχ ¼ dH. As is well known [10], such
solutions are then specified by four harmonic functions
H, K, L, M, in terms of which

f−1 ¼ H−1K2 þ L;

ω ¼ ωψðdψ þ χidxiÞ þ ω̂idxi; ð3Þ

where

ωψ ¼ H−2K3 þ 3

2
H−1KLþM;

⋆3dω̂ ¼ HdM −MdH þ 3

2
ðKdL − LdKÞ: ð4Þ
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The Maxwell field is determined by

F ¼
ffiffiffi
3

p

2
d

�
fðdtþ ωÞ − K

H
ðdψ þ χidxiÞ − ξidxi

�
; ð5Þ

where the 1-form ξ satisfies ⋆3dξ ¼ −dK.
Now we write the R3 in polar coordinates,

dxidxi ¼ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

and consider the 2-centered solution

H ¼ 2

r
−

1

r1
; M ¼ mþm1

r1
;

K ¼ k0
r
þ k1

r1
; L ¼ 1þ l0

r
þ l1

r1
; ð7Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a21 − 2ra1 cos θ

p
is the distance from

the origin to the “center” (0; 0; a1). We assume a1 > 0. We
used a shift freedom in the harmonic functions to remove
any 1=r term in M, without any loss of generality [11].
To fully determine the solution, we must integrate to find
the 1-forms χ; ω̂; ξ. We find

χ ¼
�
2 cos θ −

r cos θ − a1
r1

�
dϕ;

ω̂ ¼
�
−
�
2mþ 3

2
k0

�
cos θ þ ðm − 3

2
k1Þðr cos θ − a1Þ

r1

þ ðr − a1 cos θÞ½2m1 þ 3
2
ðl1k0 − l0k1Þ�

a1r1
þ c

�
dϕ;

ξ ¼ −
�
k0 cos θ þ k1

r cos θ − a1
r1

þ c0
�
dϕ; ð8Þ

where c; c0 are integration constants (we have set the one
for χ to zero by suitably shifting ψ). Crucially, observe that
χ ∼ cos θdϕ as r → ∞, and χ ∼ ð1þ 2 cos θÞdϕ as r → 0;
as we will show, this allows the spacetime to interpolate
between S3 at spatial infinity and S3=Z2 near the horizon.
For a suitable choice of constants, the solution is

asymptotically flat. Defining r ¼ ρ2=4, it is easy to check
that the Gibbons-Hawking base for ρ → ∞ looks like

ds2M ∼ dρ2 þ 1

4
ρ2ðdθ2 þ sin2θdϕ2Þ

þ 1

4
ρ2ðdψ þ cos θdϕÞ2; ð9Þ

with subleading terms of order Oðρ−2Þ. Hence, the base is
asymptoticallyR4 provided we fix the periods of the angles
to be Δψ ¼ 4π, Δϕ ¼ 2π, and 0 ≤ θ ≤ π. Now, it is also
clear that f ¼ 1þOðρ−2Þ. Furthermore, ωψ ¼ Oðρ−2Þ and
ωϕ ¼ Oðρ−2Þ, provided we fix the constants,

m ¼ −
3

2
ðk0 þ k1Þ; c ¼ 3l0k1 − 3l1k0 − 4m1

2a1
; ð10Þ

respectively. We will assume these choices henceforth, so
our solution is asymptotically flat R1;4.
Although the solution appears singular at centers r ¼ 0

and r1 ¼ 0, we will show that by suitably choosing our
constants, r ¼ 0 corresponds to an event horizon and
r1 ¼ 0 corresponds to a smooth timelike point.
First consider the center r1 ¼ 0. Near this center the

Gibbons-Hawking base approaches−R4 smoothly, provided
the angles are identified in the same manner as required by
asymptotic flatness [11,12]. To see this, change to R3 polar
coordinates with respect to this center (r1; θ1), then set
ρ ¼ 2

ffiffiffiffiffi
r1

p
. One finds that ds2M as ρ → 0 approaches minus

(9) with (θ;ψ ;ϕ) replaced by (θ1;ψ þ 2ϕ;−ϕ). Introducing
R2 polar coordinates (X;Φ), (Y;Ψ) on the orthogonal
2-planes, X ¼ ρ cos 1

2
θ1; Y ¼ ρ sin 1

2
θ1, Φ¼ 1

2
ðψþϕÞ, and

Ψ ¼ 1
2
ðψ þ 3ϕÞ, one can then demonstrate smoothness at

the center [12]. Further, imposing that the center is a timelike
point requires fjx¼x1 ≠ 0, which implies l1 ¼ k21. In fact, to
get the correct spacetime signature we require fjx¼x1 < 0.
One can then check the function f is smooth at the center
r1 ¼ 0. Since ∂ψ degenerates at the center, smoothness also
requires thatV ·∂ψ ¼−f2ωψ vanishes at that point. In fact,ωψ

is singular at the center unless m1 ¼ 1
2
k31. Then further

imposingωψ vanishes at the center also implies the constraint

3a1ð2k1 þ k0Þ þ 3l0k1 − 3k0k21 − 2k31 ¼ 0: ð11Þ

These conditions imply ω ¼ OðX2ÞdΦþOðY2ÞdΨ ensur-
ing the 1-form ω—and hence the spacetime metric—is
smooth at the center r1 ¼ 0. The Maxwell field is then also
smooth at the center. Thus, our solutions are parametrized by
(l0; k0; k1; a1), subject to the constraint (11), resulting in a
three-parameter family. Observe that if k1 ¼ 0, then k0 ¼ 0;
we will show this is incompatible with smoothness of the
axis of rotation [see Eqs. (21), (22)]. Thus, k1 ≠ 0 which
allows us to solve (11) for l0.
Now consider the center r ¼ 0. We will show that this

corresponds to a regular event horizon if

R2
1 ≡ 2l0 þ k20 > 0; R2

2 ≡ l2
0ð8l0 þ 3k20Þ
ð2l0 þ k20Þ2

> 0:

ð12Þ

To this end, transform to new coordinates (v; r;ψ 0; θ;ϕ),

dt ¼ dvþ
�
A0

r2
þ A1

r

�
dr;

dψ þ dϕ ¼ dψ 0 þ B0

r
dr; ð13Þ
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where A0; A1; B0 are constants to be determined. Then,

gvv ¼ −
4r2

R4
1

þOðr3Þ; gψ 0ψ 0 ¼ 1

4
R2
2 þOðrÞ;

gvψ 0 ¼ −
ð3l0 þ k20Þk0r

R4
1

þOðr2Þ: ð14Þ

In general, grr contains 1=r2 and 1=r singular terms,
whereas grψ 0 contains 1=r singular terms. Demanding that
the 1=r term in grψ 0 and the 1=r2 term in grr vanish,
corresponds to fixing the constants

B0 ¼
4k0ð3l0 þ k20ÞA0

l2
0ð8l0 þ 3k20Þ

; A2
0 ¼

1

4
l2
0ð8l0 þ 3k20Þ: ð15Þ

This then gives gvr ¼ �ð2=R2Þ þOðrÞ; grψ 0 ¼ Oð1Þ,
where the sign corresponds to that of A0 (positive if
A0 < 0 and vice versa). Finally, demanding that the 1=r
term in grr also vanishes, fixes A1 to be a complicated
constant. Then grr¼Oð1Þ. Furthermore, χ¼ ½1þ2cosθþ
Oðr2Þ�dϕ and ω̂ ¼ OðrÞdϕ [to show the latter one
needs (11)].
It is now easily checked that the metric and its inverse

are analytic at r ¼ 0 and therefore can be extended to a
new region r < 0. The surface r ¼ 0 is a degenerate Killing
horizon with respect to the supersymmetric Killing field
V ¼ ∂=∂v, with the upper (lower) sign corresponding to a
future (past) horizon. It is also easily checked that the
Maxwell field is regular on the horizon. The near-horizon
geometry (NH) may be extracted by scaling ðv; rÞ →
ðv=ϵ; ϵrÞ and letting ϵ → 0 [13]. We find

ds2NH ¼ −
4r2dv2

R2
1R

2
2

� 4dvdr
R2

þ R2
1ðdθ2 þ sin2θdϕ2Þ

þ R2
2

4

�
dψ 0 þ 2 cos θdϕ −

4ð3l0 þ k20Þk0rdv
R2
2R

4
1

�
2

FNH ¼
ffiffiffi
3

p

2
d

�
2rdv
R2
1

þ ð3l0 þ k20Þk0
2R2

1

ðdψ 0 þ 2 cos θdϕÞ
�
;

ð16Þ

where we have used k20ð3l0 þ k20Þ2 ¼ R4
1ðR2

1 − R2
2Þ. This

near-horizon geometry is locally isometric to that of the
Breckenridge-Myers-Peet-Vafa (BMPV) black hole [14],
as guaranteed by [15] (cf. [12]). However, the period
Δψ 0 ¼ 4π has already been fixed by asymptotic flatness
and regularity at the other center. Therefore, cross sections
of the horizon v ¼ const; r ¼ 0 are of topology Lð2; 1Þ ≅
RP3 ≅ S3=Z2, as claimed. The area of the horizon is

A ¼ 8π2R2
1R2: ð17Þ

The above black hole solution has Uð1Þ2-rotational sym-
metry. The z axis of the R3 base in the Gibbons-Hawking

space corresponds to the axes where the Uð1Þ2 Killing
fields vanish. We will now examine the geometry on these
various axes. Because of our choice of harmonic func-
tions, the z axis splits naturally into three intervals:
Iþ ¼fz>a1g; ID¼f0<z<a1g; I−¼fz< 0g. The semi-
infinite intervals I� correspond to the two axes of rotation
that extend out to infinity. As we will see, the finite
interval ID corresponds to a noncontractible disk top-
ology surface that ends on the horizon.
The 1-form χ ¼ �dϕ on I� and χ ¼ 3dϕ on ID.

Remarkably, it can also be verified that ω̂ ¼ 0 on the
whole z axis [on ID one needs to use (11)]. Thus, the
geometry and Maxwell field induced on the axis are

ds2axis ¼−f2dt2−
ΩIðzÞdtdψ I

PIðzÞ2
þPIðzÞdz2
z2jz−a1j

þ QIðzÞ
PIðzÞ2

ðdψ IÞ2;

Faxis ¼
ffiffiffi
3

p

2
d
�
fdtþRIðzÞ

PIðzÞ
dψ I

�
; ð18Þ

where PI, QI , ΩI , RI are polynomials and (ψ I;ϕI) are
angles that depend on the interval. In particular, we have
ðψ�;ϕ�Þ ¼ ðψ � ϕ;ϕÞ, ðψD;ϕDÞ ¼ ðψ þ 3ϕ;ϕÞ, and

f ¼
8<
:

zðz−2a1Þ
P�ðzÞ ; z ∈ I�

zð2a1−3zÞ
PDðzÞ ; z ∈ ID:

ð19Þ

The explicit polynomials are

P�ðzÞ¼ z2�½k21þðk0þk1Þ2þl0∓2a1�z∓a1ð2l0þk20Þ;
PDðzÞ¼−3z2þð2a1−3l0−k20þ2k0k1þ2k21Þz

þa1ð2l0þk20Þ; ð20Þ

whereas the QI are quintics such that Qþ ∼ a−21 ðz − a1Þ
Pþða1Þ3; QD ∼ a−21 ða1 − zÞPDða1Þ3 and Ωþ ¼ Oðz − a1Þ;
ΩD ¼ Oða1 − zÞ, as z → a1.
In order for the axis geometry to be a smooth Lorentzian

metric we require PI > 0 and QI > 0 on each of their
corresponding intervals. Thus, on Iþ we must have
PþðzÞ > 0, which in fact is equivalent to Pþða1Þ > 0
and P0þða1Þ > 0 (since R2

1 > 0, Pþ has positive discrimi-
nant). Explicitly, these inequalities read

2k0k1 þ 2k21 − a1 − l0 > 0; ð21Þ

ðk0 þ k1Þ2 þ k21 þ l0 > 0: ð22Þ

It is easily seen that these conditions also guarantee that
PDðzÞ > 0; P−ðzÞ > 0 on their respective intervals, since
PDð0Þ ¼ a1R2

1 > 0; PDða1Þ ¼ Pþða1Þ > 0 and P−ð0Þ ¼
a1R2

1 > 0;−P0−ð0Þ ¼ P0þða1Þ þ 2a1 > 0. Furthermore, we
have verified numerically that in the domain (21) and (22)
the polynomials Q�; QD are positive on I�; ID, so this
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places no further constraints. Observe that PI > 0 also
guarantees the Maxwell field is smooth.
Now, on Iþ the Killing field vþ ¼ ∂ϕþ ¼ ∂ϕ − ∂ψ

vanishes, whereas ∂ψþ ¼ ∂ψ is nonvanishing everywhere
and degenerates smoothly at the end point z ¼ a1 (one can
check the conical singularity at z ¼ a1 in (18) is absent since
Δψþ ¼ 4π). Next, on ID the Killing field vD ¼ ∂ϕD

¼
∂ϕ − 3∂ψ vanishes, whereas ∂ψD

¼ ∂ψ is nonvanishing
everywhere and vanishes at the end point z ¼ a1 smoothly
(again since ΔψD ¼ 4π the conical singularity is absent).
On the other hand, ∂ψD

does not vanish at the end point
z → 0 which ends on the horizon, so the finite interval ID is
a disk topology surfaceD. On the final interval I− the Killing
field v− ¼ ∂ϕ− ¼ ∂ϕ þ ∂ψ vanishes, whereas ∂ψ−

¼ ∂ψ is
nonvanishing everywhere including on the horizon z → 0. It
is worth noting that in the 2π-normalized basis (∂ϕþ ; 2∂ψþ),
the vanishing Killing fields on Iþ and ID are vþ ¼ ð1; 0Þ
and vD ¼ ð1;−1Þ, respectively, so the compatibility con-
dition for adjacent intervals is satisfied [7],

det ðvTDvTþÞ ¼ 1: ð23Þ

Finally, observe that on the axis, f ¼ 0 at z ¼ 2a1 and
z ¼ 2

3
a1, so the supersymmetric Killing field is null on these

circles. In fact, Pþð2a1Þ ¼ a1ðk0 þ 2k1Þ2 and PDð23 a1Þ ¼
1
3
a1ðk0 þ 2k1Þ2, so we must have k0 þ 2k1 ≠ 0. It can be

shown this implies that Ωþð2a1Þ ≠ 0 and ΩDð23 a1Þ ≠ 0,
which ensures the metric on the axis (18) is smooth and
invertible even where f ¼ 0. It is worth emphasizing this is
guaranteed by our above conditions. To see this, suppose
k0 ¼ −2k1, so then (11) may be solved to get l0 ¼ − 4

3
k21;

in this case (21) is violated so we deduce k0 ≠ −2k1. To
summarize, we have shown that the metric on the whole z
axis is smooth and invertible if and only if R2

1 > 0, (21)
and (22) are satisfied.
We now address regularity and causality in the domain of

outer communication r > 0. It is easy to prove that R2
1 > 0

and (21) imply that K2 þHL > 0 away from the centers,
ensuring f is smooth everywhere. Remarkably, this also
guarantees that the full spacetime metric is smooth and
invertible, and the gauge field is smooth, everywhere away
from the centers (even where H ¼ 0). We also require
stable causality with respect to the time function t, thus,

gtt ¼ −f−2 þ fHω2
ψ þ fH−1ω̂iω̂i < 0: ð24Þ

Asymptotically r → ∞, it is clear that this is satisfied since
gtt → −1. Also, gtt ∼ − 1

4
R2
1R

2
2r

−2 as r → 0, so the solution
is stably causal near the horizon. On the axes of symmetry,
the condition reduces to −f−2 þ fHω2

ψ < 0 and hence
away from the center z ¼ a1 it is equivalent to positivity
of the polynomials QD;Q� discussed above. Away from
the axis we have performed extensive numerical checks
and found no violation of (24), provided that (12), (21),

and (22) are satisfied. Therefore, we believe our solution is
stably causal if and only if (12), (21), and (22) are satisfied.
This ensures there are no closed timelike curves in the
domain of outer communication.
We will now briefly discuss some of the physical proper-

ties of our black lens solution. We find the Maxwell charge
and Komar angular momenta are

Q ¼ 2π
ffiffiffi
3

p
½l0 þ k21 þ ðk0 þ k1Þ2�;

Jψ ¼ π

�
1

2
k31 þ ðk0 þ k1Þ

�
ðk0 þ k1Þ2 þ

3

2
ðl0 þ k21Þ

��
;

Jϕ ¼ 3

2
πa1ðk0 þ 2k1Þ: ð25Þ

The mass is given by the Bogomol’nyi-Prasad-Sommerfield
(BPS) relation M ¼ ð ffiffiffi

3
p

=2ÞQ. Our solution also carries a
magnetic flux through the disk topology surfaceD discussed
above,

q½D� ¼ 1

4π

Z
D
F ¼

ffiffiffi
3

p

4
ðk0 þ 2k1Þ: ð26Þ

Since our solution is a three-parameter family there must be
one constraint between these four physical quantities. As for
any BPS black hole, the surface gravity and angular velocity
must vanish and the electric potential ΦH ¼ ð ffiffiffi

3
p

=2Þ.
Furthermore, the electric flux Q½D� which appears in the
first law of black hole mechanics [16] also vanishes [12], so
the Smarr relation and first law reduce to the BPS bound.
The magnetic flux q½D� for our solution is necessarily

nonvanishing, since, as shown above, smoothness of the
axes of rotation requires k0 ≠ −2k1. One might be tempted
to interpret the magnetic flux as “supporting” the black
lens, since the disk D is required for a lens-space horizon
topology. However, this need not be the case. Black rings
also possess a disk topology region ending on the horizon,
which shows that rotation may be sufficient for supporting
nontrivial topology.
One might wonder if our solution may possess the same

conserved charges as the BMPV black hole. Equal angular
momenta with respect to the orthogonalUð1Þ2 Killing field
at infinity requires Jϕ ¼ 0 or Jψ ¼ 0. In fact, Jϕ ≠ 0 since,
as shown above, k0 ≠ −2k1. It also turns out the solution
with Jψ ¼ 0 is not compatible with our regularity con-
straints, although this is less straightforward to show.
Hence, there are no regular black lenses in our family of
solutions, with the same charges as BMPV. On the other
hand, the supersymmetric black ring possesses nonequal
angular momenta [17], so we may expect there are black
lenses with the same conserved charges.
In conclusion, the black lens we have presented, together

with the recently found spherical black hole with an
exterior 2-cycle [12], demonstrate that black hole unique-
ness in five dimensions is violated much more drastically
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than previously thought, even for supersymmetric black
holes. It would be interesting to explore the implications
of this for the microscopic entropy calculations in string
theory. We also expect nonextremal versions of our
solutions to exist. In particular, we do not expect magnetic
flux is required to support lens-space topology, so a regular
vacuum black lens may also exist.
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