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We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a
dynamical transition between two stationary states characterized by different excitation densities. We
determine the structure and properties of the phase diagram and identify the universality class of the
transition, both for the statics and the dynamics. We show that the proper dynamical order parameter is in
fact not the excitation density and find evidence that the dynamical transition is in the “model A”
universality class; i.e., it features a nontrivial Z2 symmetry and a dynamics with nonconserved order
parameter. This sheds light on some relevant and observable aspects of dynamical transitions in Rydberg
gases. In particular it permits a quantitative understanding of a recent experiment [C. Carr, Phys. Rev. Lett.
111, 113901 (2013)] which observed bistable behavior as well as power-law scaling of the relaxation time.
The latter emerges not due to critical slowing down in the vicinity of a second order transition, but from the
nonequilibrium dynamics near a so-called spinodal line.
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Introduction.—The study of the emergence of collective
behavior in many-body systems represents a very active
field of research. Fundamental insights, such as the onset of
universality and its consequences [1–3] are central for our
understanding of matter in general. In recent years, there
has been a growing interest in understanding dynamical
phase transitions [4–6] in the context of driven open
many-body quantum systems [7–21], and progress in the
manipulation of ultracold atoms [22] has made it possible
to access and explore many-body phenomena under pre-
cisely controllable experimental conditions [23,23–27].
In this context, a class of systems that offers a rich and

intricate physics is represented by so-called Rydberg gases
[28–33], i.e., atomic clouds in which atoms are laser-
excited to high-lying energy levels. The main consequence
of the population of such orbitals is a considerable increase
[29,30] in the interaction strength. This is at the heart of
several nontrivial dynamical phenomena, both for closed
systems undergoing coherent evolution and showing
enhanced spatial (anti-)correlations [34–37], and for open
ones, in which the interplay between driving and dissipa-
tion leads instead to intermittency [38], glassy behavior
[39] and bistable behavior [40].
The dissipative case has been recently studied via a

mean-field approach [41–43], numerical calculations in one
dimension [44–46] and an approximate rate equation
description in higher dimensions [33,47–49]. These
investigations highlighted the presence of various station-
ary regimes and the existence of first and second order
phase transitions. In addition, experiments have probed the
static and dynamic features of these systems revealing
bimodal behaviors [31] and optical bistabilities [32].

The aim of this work is to shed light on the bistable
transition in a dissipative Rydberg gas with particular focus
on its dynamics and to connect the findings to recent
observations. For the stationary state, the transition is
related to the spontaneous breaking of a Z2 symmetry
and falls into the Ising universality class. The effective
static order parameter is an appropriately shifted Rydberg
excitation density. The dynamics is found to be of model A
type according to the standard classification of Ref. [4].
This means that its critical properties coincide with those of
a classical stochastic process described by a Langevin
equation governing the interplay between a conservative,
Z2-preserving force and white Gaussian noise. This cor-
responds to an Ising model subject to a spin-flipping
dynamics which does not preserve the total magnetization,
i.e., Glauber dynamics. However, within the dynamical
framework it becomes clear that the dynamical order
parameter is not formally identical to the Rydberg excita-
tion density and the Z2 symmetry identified in the static
case must be nontrivially generalized. Linking to recent
experimental studies [32], we note that the dynamic
transitions observed there take in fact place near the so-
called spinodal lines of the mean-field phase diagram. This
kind of regime has already been studied from a dynamical
perspective in the context of noninteracting atoms in optical
cavities (“Dicke model” scenario) [50], Josephson junc-
tions [51] and carefully-engineered micromechanical oscil-
lators [52], which fall into the same universality class. The
connection established to model A physics allows us to
extract a universal scaling law for relaxation times for
which quantitative agreement with experiment is found. We
believe that this perspective will be useful for analyzing and
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understanding the dynamical phenomena observed in
other related experiments, such as the one presented
in Ref. [31].
The model.—We employ the standard description of a

Rydberg gas in terms of (fictitious) interacting spin-1=2
particles [29,40,41,53], where the states j↓i and j↑i
correspond to the atomic ground and Rydberg states
respectively. The dynamics of the system’s density matrix
ρ̂ is governed by the quantum master equation (QME)
∂tρ̂ ¼ −i½Hρ̂� þ ð L1 þ L2Þ½ρ̂� [54] with Hamiltonian

H ¼ Ω
X

k

σ̂xk þ Δ
X

k

n̂k þ
X

k≠p
Vkpn̂kn̂p; ð1Þ

expressed in a frame rotating at the laser frequency [55].
Here Ω is the (real) Rabi frequency and Δ the detuning of
the excitation laser with respect to the ground state–
Rydberg state transition. The (symmetric) interaction
between two atoms positioned at ~rk and ~rp is typically
isotropic and of van der Waals type 2Vkp ¼ Vkp þ Vpk ¼
C6j~rk − ~rpj−6 [29,30], although other potentials may arise
in different regimes [56–58]. Note, that our treatment
merely requires the interactions to be short-ranged.
Finally, we have defined the excitation density
n̂k ¼ ð1k þ σ̂zkÞ=2, with fσ̂xk; σ̂yk; σ̂zkg being the usual quan-
tum spin operators acting on the k-th site.
Relating to previous experimental and theoretical

studies [29,31,39–42,53,59], dissipation is described by
a dissipator of Lindblad form

Lj½ð·Þ� ¼
X

k

�
Ljkð·ÞL†

jk −
1

2
fL†

jkLjkð·Þg
�
: ð2Þ

Such formulation is appropriate for ultra-cold quantum
optical systems like ours where noise occurs through the
coupling of the system’s degrees of freedom to the radiation
field that effectively acts as a memory-less bath. We
account for two different mechanisms: One is independent
atomic decay (at rate Γ) from the Rydberg state to the
ground state, with jump operator L1k ¼

ffiffiffi
Γ

p
σ̂−k ¼ffiffiffi

Γ
p ðσ̂xk − iσ̂ykÞ=2. The second one is dephasing of the
Rydberg state relative to the ground state, occurring at
rate K with L2k ¼

ffiffiffiffi
K

p
n̂k.

Mean-field equations of motion.—A mean-field treat-
ment of the Rydberg gas has been already conducted to
some extent in other works, see, e.g., [41]; here we just
briefly summarize the derivation of the equations of
motion. We consider the complete set of one-atom observ-
ables f1k; σ̂xk; σ̂yk; n̂kg and calculate their respective aver-

ages f1; ~Sg≡ f1; Sx; Sy; ng according to hð·Þh¼ trfρ̂ð·Þg.
Applying the QME, assuming spatial uniformity and
factorising all quadratic expectations yields the closed
set of dynamical equations

_Sx ¼ −ðΔþ VnÞSy − ΓþK
2

Sx

_Sy ¼ 2Ω − 4Ωnþ ðΔþ VnÞSx − ΓþK
2

Sy

_n ¼ ΩSy − Γn;

ð3Þ

with V ¼ 2
P

pVkp the mean-field interaction energy.
Stationary regime.—Introducing the effective parameters

a ¼ 2þ 1

4

ΓðΓþ KÞ
Ω2

; b ¼
�
V
Ω

�
2 Γ
Γþ K

; c ¼ Δ
V

ð4Þ
allows us to formulate the problem in a concise way. We
can eliminate Sx and Sy from the stationary solutions of
Eq. (3), thus obtaining an algebraic equation for the
stationary average number of excitations n,

n½aþ bðcþ nÞ2� ¼ 1: ð5Þ
This expression is a cubic real polynomial in n and admits
from 1 to 3 real roots depending on the specific values
taken by ða; b; cÞ within the physically allowed space
fa ≥ 2; b ≥ 0g. In Fig. 1 we report the corresponding
phase diagram in the a − b plane for different choices of c.
The stable phase of the system corresponds to the param-
eter domain displaying only one acceptable solution.
Complementary to this domain is the bistable regime

FIG. 1 (color online). Phase diagram in the a − b plane [as
defined in Eq. (4)] for three different values of c. The shaded
areas correspond to domains portraying three stationary real
solutions. Their boundaries identify the spinodal lines. The black
curve represents the path threaded by the critical point when
varying c, corresponding to the projection of the critical line
fac; bc; cg ¼ f−9=ð8cÞ;−27=ð8c3Þ; cg onto the a − b plane.
This line meets the vertical axis at bmin ¼ 512=27. Panels (b)
relate to c ¼ −0.42 and show the excitation density n taken along
the three cuts shown in panel (a): in panels (b.1) and (b.2) we
show n as observed on the blue and red dashed lines, respectively,
which correspond to the “thermal” and “magnetic” directions
(see main text). The black dashed line which crosses the
spinodal boundaries probes instead the stable-bistable transition,
corresponding to the hysteresislike profile in panel (b.3).
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[38,40,41], with Eq. (5) featuring three solutions, only two
of which are stable. The boundaries between stable and
bimodal regimes are the spinodal lines, where at least two
solutions coincide. For any value of c, the spinodal lines
coalesce into a critical point identified by ac ¼ −9=ð8cÞ
and bc ¼ −27=ð8c3Þ, which corresponds to having three
coincident real solutions for Eq. (5). By varying the laser
detuning Δ, this point moves along the curve b ¼ ð4a=3Þ3
shown in Fig. 1 and lies within the aforementioned physical
parameter space only when −9=16 ≤ c ≤ 0. Varying Ω,
instead, implies moving along straight lines departing from
ða ¼ 2; b ¼ 0Þ with a slope increasing with the interaction
strength V. Thus, one can work out a threshold value
(corresponding to the tangent to the critical curve) Vmin ¼
4ðΓþ KÞ below which the transition cannot be found by
just changing the laser parameters.
We investigate now the universal features near the

critical point: We expand Eq. (5) to leading order in a
perturbation of the parameters around their critical values
(a ¼ ac þ δa and b ¼ bc þ δb) and study the correspond-
ing variation of the stable solutions nst ¼ nc þ δn ¼
−2c=3þ δn. We identify a special direction δb ¼
ð−9=c2Þδa [in the following referred to as symmetry line,
see Fig. 1(a)] along which the solution is invariant under the
transformation δn → −δn (with a more complicated one
holding for Sx and Sy). Thus, a Z2 symmetry for the
stationary value of the excitation density n emerges, which
is spontaneously broken in the bistable phase [see
Fig. 1(b.1)]. When approaching the critical point along
the symmetry line we find δn ∼ ð−δaÞ1=2. For any other
direction [e.g., the red dashed line in Fig. 1(a)] the system
does not switch phases when crossing the critical point. The
corresponding behavior, portrayed in Fig. 1(b.2), is
described by jδnj ∼ jδaj1=3. We can thus conclude that this
transition belongs to the (static) Ising universality class
with order parameter δn ¼ n − nc: In fact, the magnetiza-
tion m of an Ising model, as a function of the temperature
T, the critical temperature Tc and the magnetic field
h is known to obey mðT; h ¼ 0Þ ∼ jT − Tcjβ and
mðTc; hÞ ∼ h1=δ, with mean-field exponents β ¼ 1=2 and
δ ¼ 3 [3,60]. In analogy, we associate the symmetry line
(b.1) to the thermal direction and any deviation from it to
the presence of a Z2-breaking magnetic field. Finally, a
generic choice of the parameters will lead to probing the
spinodal behavior shown in Fig. 1(b.3), which has indeed
been highlighted in previous theoretical and experimental
studies [32,42].
Dynamical vs static order parameter.—We now turn to

the dynamical aspects: As a first step, we perform an
analysis of the stability of the stationary points. In their
neighborhood, we expand the r.h.s. of Eqs. (3) to linear
order in the deviations (e.g., δn ¼ n − nst), which obey the

differential equation δ
_~S ¼ Mδ~S. The eigenvalues of the

stability matrixM constitute the rates of approach or escape
from the stationary point. Whenever the solution is unique,

it is stable as well; when three solutions are present, the two
extremal ones are stable, while the one in the middle is
unstable, cf. [41].
Here, however, we focus on the universal properties that

emerge near the critical point and the spinodal lines, where
null eigenvalues appear. This implies the emergence of
(leading) algebraic decays δn ∼ t−1=ζ towards stationarity,
with different exponents in the spinodal (ζ ¼ 1) and critical
(ζ ¼ 2) regimes. In the critical case, scaling arguments
predict an algebraic law of the form t−β=ðνzÞ, with z being
the dynamical critical exponent. The determination of the
static universality class (Ising) provides us with the mean-
field exponents β ¼ ν ¼ 1=2. Thus, we conclude that
z ¼ 2, describing the dynamics of a diffusive system.
In addition to the null direction, the stability matrix

displays two nonvanishing (massive) eigenvalues, identify-
ing two noncritical directions. Hence, the effective order
parameter for the long time dynamics has only one
component δn0; due to the nonlinearity of Eqs. (3), δn0
is a nontrivial function of the original variables (see axes in
Fig. 2), which only coincides with δn in the stationary
regime. A discrete Z2 invariance of the equations of motion
under δn0 → −δn0 is expected along the symmetry line of
Fig. 1. We analytically verified this up to the quadratic
order. The absence of any apparent conservation law
strongly suggests that the dynamics of the system at hand
belongs to the (one component) model A universality class.
We remark that this is similar to the critical point in the
driven open Dicke model [7,12–15], which however con-
stitutes a zero dimensional model where the mean-field
exponents are exact. Consistently with this picture, at the
critical point the equation of motion reads δ _n0 ∝ ðδn0Þ3 at
leading order. In contrast, along the spinodal lines we
find δ _n0 ∝ ðδn0Þ2 and, consequently, an exponent ζ ¼ 1.
We remark that the emergent symmetry introduced
above does not lie among those identified in Ref. [41]

FIG. 2 (color online). The nonlinear transformation from the
stationary basis of observables fSx; Sy; ng to the dynamical one
(fSx0; Sy0; n0g) is qualitatively depicted in the main panel. The
critical or off-critical behavior of the δS0 components can be
captured by superimposing an effective potential V which we
discuss later in the text. Crucially, the double-well structure
(responsible for the model A physics) is only felt by the critical n0,
whereas along the other “massive” directions the system only
probes single quadratic wells which play no role in the transition,
as we sketch on the right.
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(i.e., fΔ; V; Sxg → f−Δ;−V;−Sxg and fΩ; Sx; Syg →
f−Ω;−Sx;−Syg), which are unbroken in both phases.
Metastable dynamics and connection to experiments.—

We now connect these findings to recent experiments
[31,32] that have investigated the dynamics of dissipative
Rydberg gases. The work presented in Ref. [31] has
explored the phase diagram in the Ω − Δ plane, shown
in Fig. 3(a). Another experiment [32] has highlighted a
bistable behavior similar to the one presented in Fig. 1(b.3).
Moreover, a power-law behavior of the relaxation time
close to a “critical value” of the excitation laser strength
was reported.
In order to gain some intuitive insight on these phenom-

ena, we exploit our knowledge of the universality class
and introduce a phenomenological mean-field potential
Vðn0Þ ¼ αn0 − βðn0Þ2 þ γðn0Þ4 which reflects the profile
reported in the topmost panel on the r.h.s. of Fig. 2. The
corresponding mean-field dynamics is given by
_n0 ¼ −∂n0Vðn0Þ. For fixed β > 0 and γ > 0, this equation
portrays a stable (one minimum) to bistable (two minima)
transition at a threshold value αc ¼ ð2β=3Þ3=2γ. The experi-
ments mentioned above are performed such that initially no
excited atoms are present and subsequently the excitation
laser is switched on at given values of Δ and Ω. In the
bistable phase (α < αc) this may lead to a fast relaxation
towards the nearest local minimum of Vðn0Þ, which is not
necessarily the global one [see (stars) in Fig. 3(a)].
Accounting for fluctuations (beyond mean-field) may in
general introduce an additional time scale beyond
which this picture is no longer valid and a different
physics emerges. Furthermore, a correction to the value
of the exponent would ensue. However, the agreement
between our predictions and experimental observations
highlighted below suggests that these features are
quite robust (at least down to three dimensions) and
that current experiments indeed probe this “short time
physics”.

When α ¼ αc, i.e., on a spinodal line, one of the minima
becomes an inflection point [see (squares) in Fig. 3(a)]. For
α≳ αc [see (triangles) in Fig. 3(a)], in the proximity of the
disappeared minimum one can identify a region of vanish-
ing slope of the potential, which leads to a characteristic
slow dynamics in a flat landscape. This is reflected in the
evolution of observables by the appearance of long-lived
plateaus [see, e.g., Fig. 3(b) and Fig. (4) in Ref. [32]] whose
lifetime τ diverges when approaching αc. By analytically
solving the phenomenological equations of motion one
obtains τ ∼ ðα − αcÞ−θ with θ ¼ 1=2, which agrees with the
experimental estimate θ ¼ 0.53� 0.10 of Ref. [32]. If,
instead of a spinodal line, one crosses the critical point [i.e.,
β ¼ 0 in Vðn0Þ�, a different exponent θ ¼ 2=3 is found. It
should be possible to test this prediction in the experimental
setting of Ref. [32], which would constitute strong evidence
for universal model A physics.
Note that, instead of n0, the standard experimental

observable is the excitation density n. Nonetheless, since
the modes δS0x=y decay exponentially fast, the long time
dynamics is dominated by n0 and critical scaling is
exhibited by the standard observables as well. This and
the results of the phenomenological model are confirmed
by the numerical solution of the full dynamical equa-
tions (3): Mimicking the experimental procedure [61], i.e.,
computing τ for different values ofΩ in the proximity of the
spinodal lines while keeping V,Δ, Γ,K fixed [see Fig. 3(a)]
indeed yields algebraic divergences τ ∼ ðΩ −ΩcÞ−θ [see
Figs. 3(c) and (d)] with exponents θ ≈ 0.5 and θ ≈ 0.66 for
the spinodal and critical cases, respectively.
Conclusions and outlook.—We have found strong

evidence for the nonequilibrium dynamics of the dissipa-
tive Rydberg gas being governed by the much studied
[4,6,62–65] model A universality class whose lower critical
dimension is two. This would exclude the presence of a
phase transition in dimension one—a question that was
raised by the authors of Ref. [42].

FIG. 3 (color online). Emergence of metastable regimes in the vicinity of the spinodal lines. In panel (a) we show the phase diagram in
the Δ=Γ − Ω=Γ plane at K ¼ 0 and V fixed. The solid and dashed curves show the spinodal and symmetry lines of Fig. 1, respectively.
On the right we display the qualitative structure of the mean-field potential Vðn0Þ for parameters corresponding to inside (stars), on
(squares) and outside (triangles) the spinodal lines (see text). In panel (b) we show an example for the relaxation of the excitation density
n (from an initial value n0) towards the stationary value nst, for parameters near one of these boundaries. Here we observe a metastable
plateau whose lifetime τ is determined by the first crossing time of the midpoint n̄ ¼ ðnst þ n0Þ=2. Panels (c),(d) display a power-law
divergence of τ as a function of the reduced Rabi frequency ω ¼ ðΩ −ΩcÞ=Ωc varied along the red and purple curves in panel (a) (see
for comparison the experimental data shown in Fig. 4 of Ref. [32]). The power changes from θ ¼ 1=2 in the bistable region [diamonds in
panels (a),(c),(d)] to θ ¼ 2=3 when intersecting the critical point [disks in panels (a),(c),(d)].
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We moreover observed the emergence of a metastable
regime in close proximity to the spinodal lines, whose
lifetime diverges algebraically as observed in a recent
experiment. Surprisingly, our mean-field approach is quan-
titatively accurate in determining the exponent of this
power-law. Whether this is due to experimental uncertain-
ties or a result of some more subtle issues arising in the
spinodal regime constitutes a matter of future experimental
and theoretical investigation.
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Note added in proof.—We have become aware of a recent
work [66] which, by applying a variational analysis to the
steady state of the dynamics, highlights a phase transition
of the same nature.
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