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We study percolation on networks, which is used as a model of the resilience of networked systems such
as the Internet to attack or failure and as a simple model of the spread of disease over human contact
networks. We reformulate percolation as a message passing process and demonstrate how the resulting
equations can be used to calculate, among other things, the size of the percolating cluster and the average
cluster size. The calculations are exact for sparse networks when the number of short loops in the network is
small, but even on networks with many short loops we find them to be highly accurate when compared with
direct numerical simulations. By considering the fixed points of the message passing process, we also show
that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue
of the so-called nonbacktracking matrix.
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Percolation, the random occupation of sites or bonds on a
lattice or network with independent probability p, is one of
the best-studied processes in statistical physics. It is used as
a model of porous media [1,2], granular and composite
materials [3–6], resistor networks [7], forest fires [8], and
many other systems of scientific interest. In this Letter we
study the bond (or edge) percolation process on general
networks or graphs, which is used to model the spread of
disease [9,10] and network robustness [11–13] in social and
technological networks, among other things. Although
percolation has been studied extensively on simple model
networks such as random graphs [11,12,14,15], there are
few analytic results for real-world networks, whose struc-
ture is typically more complicated. We show that perco-
lation properties of networks can be calculated using a
message passing technique, leading to a range of new
results. In particular, we derive equations for the size of the
percolating cluster and the average size of nonpercolating
clusters, which can be solved rapidly by numerical iteration
given the structure of a network and the value of p. By
expanding the message passing equations about the critical
point we also derive an expression for the position of the
percolation threshold, showing that the critical value of p is
given by the inverse of the leading eigenvalue of the so-
called nonbacktracking matrix [16,17], an edge-based
matrix representation of network structure that has found
recent use in studies of community detection and centrality
in networks [17,18]. The quantities we calculate are
averages over all possible realizations of the randomness
inherent in the percolation process, rather than over a single
realization, obviating the need for a separate average over
realizations as is typically required in direct numerical
simulations.
We focus in particular on sparse networks, those for

which only a small fraction of possible edges are present,

which includes most real-world networks. Our results are
exact for large, sparse networks that contain a vanishing
density of short loops, but even for networks that do contain
loops, as most real-world networks do, we find the cluster
size calculations to be highly accurate and the threshold
calculations can be shown to give a lower bound on the true
percolation threshold.
Consider, then, a bond percolation process on an

arbitrary undirected network of n nodes and m edges.
Edges are occupied uniformly at random with probability p
or unoccupied with probability 1 − p. The primary entities
of interest are the percolation clusters, sets of nodes
connected by occupied edges. Since percolation is a
random process, one cannot know with certainty the
identity of the clusters ahead of time, but some things
are known. In general there will (with high probability) be
at most one percolating cluster, a cluster that fills a
nonvanishing fraction of the network in the limit of large
n, plus an extensive number of small clusters of finite
average size. The percolating cluster appears only for
sufficiently large values of p and the percolation threshold
pc is the value above which it appears; below pc there are
only small clusters.
Define πiðsÞ to be the probability that node i belongs to a

small cluster of exactly s nodes, averaged over many
realizations of the random percolation process. If the
network is a perfect tree—if it contains no loops—then
the size s of the cluster is equal to 1 (for node i itself) plus
the sum of the numbers of nodes reachable along each edge
attached to i, which is zero if the edge is unoccupied or
nonzero otherwise. If, on the other hand, there are loops in
the network then this calculation will not, in general, give
the exact value of s, since it may be possible to reach the
same node along two different occupied edges, which leads
to overcounting. If the network is sparse, however, and
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locally treelike, meaning that in the limit of large network
size an arbitrarily large neighborhood around any node
takes the form of a tree (and hence contains no loops), then
our calculation gives a good approximation, which
becomes exact in the n → ∞ limit.
Working in the large n limit then and assuming the

network to be locally treelike, the probability πiðsÞ is equal
to the probability that the numbers of nodes reachable along
each edge from i add up to s − 1, which we can write as

πiðsÞ ¼
X

fsj∶j∈N ig

�Y
j∈N i

πi←jðsjÞ
�
δ

�
s − 1;

X
j∈N i

sj

�
; ð1Þ

where πi←jðsÞ is the probability that exactly s nodes are
reachable along the edge connecting i and j,N i is the set of
immediate network neighbors of node i, and δða; bÞ is the
Kronecker delta function.
We now introduce a probability generating function

GiðzÞ ¼
P∞

s¼1 πiðsÞzs, whose value is given by

GiðzÞ ¼
X∞
s¼1

zs
X

fsj∶j∈N ig

�Y
j∈N i

πi←jðsjÞ
�
δ

�
s − 1;

X
j∈N i

sj

�

¼ z
Y
j∈N i

X∞
sj¼0

πi←jðsjÞzsj ; ð2Þ

which can be conveniently written as

GiðzÞ ¼ z
Y
j∈N i

Hi←jðzÞ; ð3Þ

where Hi←jðzÞ ¼
P∞

s¼0 πi←jðsÞzs is the generating func-
tion for πi←jðsÞ.
To calculate Hi←jðzÞ, we note that πi←jðsÞ is zero if the

edge between i and j is unoccupied (which happens with
probability 1 − p) and nonzero otherwise (probability p),
which means that πi←jð0Þ ¼ 1 − p, and for s ≥ 1

πi←jðsÞ¼p
X

fsk∶k∈N jnig

� Y
k∈N jni

πj←kðskÞ
�
δ

�
s−1;

X
k∈N jni

sk

�
;

ð4Þ

where the notation N jni denotes the set of neighbors of j
excluding i. Substituting this expression into the definition
of Hi←jðzÞ above, we then find that

Hi←jðzÞ ¼ 1 − pþ pz
Y

k∈N jni
Hj←kðzÞ: ð5Þ

This self-consistent equation for the generating function
Hi←jðzÞ suggests a message-passing algorithm: for any
value of z one guesses (for instance, at random) an initial
set of values for the Hi←j and feeds them into the

right-hand side of Eq. (5), giving a new set of values on
the left. Repeating this process to convergence gives a
solution for the generating functions, which can then be
substituted into Eq. (3) to give the generating function for
the cluster probabilities πiðsÞ, from which we can recover
the probabilities themselves by differentiating.
As an example application of this method, note that,

since πiðsÞ is the probability that i belongs to a small
(nonpercolating) cluster of size s, the probability that it
belongs to a small cluster of any size is

P
sπiðsÞ ¼ Gið1Þ

and the probability that it belongs to the percolating cluster
is 1 minus this. Then the expected fraction S of the network
occupied by the entire percolating cluster is given by the
average over all nodes:

S ¼ 1

n

Xn
i¼1

½1 − Gið1Þ� ¼ 1 −
1

n

Xn
i¼1

Y
j∈N i

Hi←jð1Þ: ð6Þ

Setting z ¼ 1 in Eq. (5) we have

Hi←jð1Þ ¼ 1 − pþ p
Y

k∈N jni
Hj←kð1Þ; ð7Þ

and the solution of this equation, for instance. by iteration
from a random initial guess, allows us to calculate the size
of the percolating cluster [19]. We give illustrative appli-
cations to several networks below.
As another example, consider the case were vertex i does

not belong to the percolating cluster. Then the expected size
hnii of the cluster it does belong to is given by

hnii ¼
P

ssπiðsÞP
sπiðsÞ

¼ Gi
0ð1Þ

Gið1Þ
¼ 1þ

X
j∈N j

H0
i←jð1Þ

Hi←jð1Þ
; ð8Þ

and, differentiating Eq. (5), we have

H0
i←jð1Þ ¼ p

�
1þ

X
k∈N jni

H0
j←kð1Þ

Hj←kð1Þ
� Y
k∈N jni

Hj←kð1Þ: ð9Þ

By iterating both Eqs. (7) and (9) from random initial
values and substituting the results into Eq. (8) we can
calculate the expected cluster size. Or we can average over
all vertices to calculate the network-wide average size of a
nonpercolating cluster.
Figure 1 shows results from the application of these

techniques to the calculation of cluster sizes for three
networks: a computer-generated network that is genuinely
treelike (so the method should work well), and two real-
world networks for which percolation could be useful as a
model of resilience—a network representation of the
Internet at the level of autonomous systems and a peer-
to-peer file sharing network. Also shown on the figure are
results from direct numerical simulations of percolation on
the same networks. As the figure shows, the message
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passing and numerical results are in excellent agreement,
not only for the computer-generated example but also for
the two real-world networks, even though the latter are not
treelike. Both the size of the percolating cluster and the
mean size of the small clusters are given accurately by the
message passing method.
One might ask what the virtue of the message passing

method is if one can perform direct percolation simulations
of the kind used in Fig. 1. There are two answers to this
question. First, simulation algorithms calculate cluster sizes
for only a single realization of the randomness inherent in
the percolation process. To get accurate results the simu-
lation must be repeated over many realizations, but this can
take a significant amount of time and even then the final
results still contain statistical errors. The message passing
method on the other hand returns the cluster size distribu-
tion over all realizations of the randomness in a single
calculation.
Second, and perhaps more intriguing, the message

passing method not only provides a numerical algorithm
for percolation calculations but also allows us to derive new
fundamental results by analyzing the behavior of the
algorithm itself. As an example, we can calculate the exact
position of the percolation threshold on an arbitrarily large,
locally treelike network, as follows.
The valueHi←jð1Þ ¼ 1 for all i; j is trivially a solution of

Eq. (7) and hence also a fixed point under the iteration of

that equation. Since Hi←jð1Þ is the probability that vertex i
does not belong to the percolating cluster, this solution
corresponds to the situation in which no vertex is in the
percolating cluster. If the solution is a stable fixed point of
Eq. (7), then the iteration will converge to it and our
message passing algorithm will tell us there is no percolat-
ing cluster. If it is unstable, we will end up at a different
solution and there is a percolating cluster. Thus, the point at
which the trivial fixed point Hi←jð1Þ ¼ 1 goes from being
stable to being unstable is precisely the percolation
threshold.
We can determine the stability of the fixed point

by linearizing: we write Hi←jð1Þ¼1−ϵi←j and expand
Eq. (7) to leading order in ϵi←j, which gives ϵi←j ¼
p
P

k∈N jniϵj←k, or in matrix notation ϵ ¼ pBϵ, where ϵ
is the 2m-element vector with elements ϵi←j and B is a
2m × 2m nonsymmetric matrix with rows and columns
indexed by directed edges i←j and elements Bi←j;k←l ¼
δjkð1 − δilÞ. This matrix is known as the Hashimoto or
nonbacktracking matrix and has been a focus of recent
attention for its role in community detection and centrality
calculations on networks [17,18].
The vector ϵ tends to zero and hence the fixed point is

stable under iteration of ϵ ¼ pBϵ if and only if p times the
leading eigenvalue of B is less than unity. Hence, we
conclude that the critical percolation probability pc of a
sparse, locally treelike network is equal to the reciprocal of
the leading eigenvalue of the nonbacktracking matrix.
A different result, reminiscent of this one, has been given

recently by Bollobás et al. [21], who show that in the limit
of large network size the critical occupation probability for
percolation on a dense network is equal to the reciprocal of
the leading eigenvalue of the adjacency matrix. The result
given here is the equivalent for sparse networks.
As a simple example consider a random k-regular graph,

i.e., a network in which every node has exactly k edges but
connections are otherwise made at random. For such a
graph the nonbacktracking matrix has k − 1 nonzero
elements in each row and column and hence its largest
eigenvalue is exactly k − 1, giving pc ¼ 1=ðk − 1Þ, which
can easily be confirmed to be the correct answer using other
methods [11,12]. The leading eigenvalue of the adjacency
matrix on the other hand, which gives the dense-graph
percolation threshold as discussed above, is k and hence
would give a lower, and incorrect, result of pc ¼ 1=k.
In fact, the leading eigenvalue of the adjacency matrix is

never less than the leading eigenvalue of the nonbacktrack-
ing matrix. To see this, consider a matrix B0, which is a
slight variant of the nonbacktracking matrix having ele-
ments B0

i←j;k←l ¼ δjk. An eigenvector v of this matrix
with elements vi←j and eigenvalue λ satisfies λvi←j ¼P

k←lδjkvk←l ¼
P

klAklδjkvk←l ¼
P

lAjlvj←l, which has
solutions vi←j ¼ wj where wj are the elements of any
eigenvector w of the adjacency matrix A and λ is the
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FIG. 1 (color online). Results for three example networks. Solid
lines are the message passing calculations and the points,
included for comparison, are from direct numerical simulations
on the same networks. For each network we show the average
size of small clusters (blue squares) and the size of the percolating
cluster (red circles). The simulations are averaged over at least
100 repetitions of the percolation process in each case. The
networks are (a) an Erdős-Rényi random graph of 10000 nodes
and mean degree 5, (b) a peer-to-peer file sharing network of
62586 nodes [20], and (c) a 22963-node snapshot of the structure
of the Internet at the level of autonomous systems.
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corresponding eigenvalue. Thus, B0 and A have the same
eigenvalues and in particular the leading eigenvalue ofB0 is
also the leading eigenvalue λA of A.
We now observe that the difference ΔB ¼ B0 − B has

elements ΔBi←j;k←l ¼ δjkδil, which are all non-negative,
and we apply the so-called Collatz-Wielandt formula, a
corollary of the Perron-Frobenius theorem which says that
for any real vector x the leading eigenvalue ofB0 (which, as
we have said, is equal to λA) satisfies

λA ≥ min
i∶xi≠0

½B0x�i
xi

¼ min
i∶xi≠0

�½Bx�i
xi

þ ½ΔBx�i
xi

�
: ð10Þ

Let us choose x to be the leading eigenvector of B, which
has all elements non-negative by the Perron-Frobenius
theorem. Then ½Bx�i=xi ¼ λB, where λB is the leading
eigenvalue of B, and ½ΔBx�i=xi ≥ 0 for all i, so Eq. (10)
implies that λA ≥ λB.
This in turn implies that the dense-matrix result for the

percolation threshold based on the adjacency matrix is a
lower bound on the percolation threshold of a sparse
treelike graph.
An interesting special case is that of a perfect tree, a

network with no loops at all. Percolation, in the sense of a
percolating cluster that fills a nonzero fraction of the
network in the large-n limit, never occurs on such a
network—for all p < 1 the largest cluster occupies only
a vanishing fraction of the network and our formalism gives
this result correctly. The diagonal elements of powers of the
nonbacktracking matrix count numbers of closed non-
backtracking walks on a graph [17,22] (hence the name
“nonbacktracking matrix”), but a perfect tree has no such
walks, so the trace of every power of the matrix is zero and
hence so also are all eigenvalues. Thus, the reciprocal of the
largest eigenvalue diverges and there is no percolation
threshold. The leading eigenvalue of the adjacency matrix,
on the other hand, is nonzero on a tree. On a k-regular tree,
for instance, the leading eigenvalue of the adjacency matrix
for large n is k again, implying a percolation threshold of
1=k. This is, indeed, a lower bound on the true percolation
threshold, as it must be, but it is in error by a wide margin.
All of our results so far have been for treelike networks,

but most real-world networks are not trees. We can none-
theless use the techniques developed here to say something
about the nontreelike case. On a tree the number of nodes
reachable along the edge from i to j is 1 (for node j itself)
plus the sum of the numbers nj←k reachable along every
other edge attached to j. On a nontree, on the other hand,
this sum overestimates the number of reachable nodes
because some nodes are reachable along more than one
edge from j. This means that for z ≤ 1 the generating
function Hi←jðzÞ for the true number of reachable
nodes will be greater than or equal to the value given by
a naive estimate calculated from a simple average over the
randomness:

Hi←jðzÞ ≥ 1 − pþ pzhz
P

k∈N jni
nj←ki

¼ 1 − pþ pz

� Y
k∈N jni

znj←k

�

≥ 1 − pþ pz
Y

k∈N jni
hznj←ki; ð11Þ

where the second inequality follows by an application of
the Chebyshev integral inequality [23]. But hznj←ki ¼
Hj←kðzÞ by definition, so we find that on a nontreelike
network the exact equality of Eq. (5) is replaced with an
inequality:

Hi←jðzÞ ≥ 1 − pþ pz
Y

k∈N jni
Hj←kðzÞ: ð12Þ

Suppose, however, that we nonetheless decide to use the
exact equality of Eq. (5), iterating to estimate the generating
functions. If we start from an initial value of Hi←j equal to
the true answer we are looking for (which we do not know,
but let us suppose momentarily that we do), then it is
straightforward to see from Eq. (12) that the value of Hi←j
will never increase under the iteration, implying that the
value we calculate will be a lower bound on the true value
for all z ≤ 1. As we approach the percolation threshold
from above in the large size limit, the true value ofHi←jð1Þ,
which represents the probability that the edge from i to j
connects to a small cluster, approaches 1, while the value
calculated from Eq. (5), which is less than or equal to the
true value, must reach 1 later, i.e., at a lower or equal value
of p. Thus, the percolation threshold estimated from Eq. (5)
is never higher than the true percolation threshold.
Equivalently, we can say that for any network, pc is always
greater than or equal to the inverse of the leading eigen-
value of the nonbacktracking matrix. The only exception is
for the case of a perfect tree, for which the largest
eigenvalue is zero, as discussed above. Thus, the leading
eigenvalue gives us a bound on the percolation threshold.
We can also combine this result with our earlier

observation that the leading eigenvalue of the adjacency
matrix is never less than that of the nonbacktracking matrix
to make the further statement that pc for any network is
always greater than or equal to the inverse of the leading
eigenvalue of the adjacency matrix. Thus, both eigenvalues
place lower bounds on pc, but the bound given by the
nonbacktracking matrix is better (or at least never worse)
than the one given by the adjacency matrix. Numerical tests
of these results on various networks are given in the
Supplemental Material [24].
In summary, we have in this Letter shown that perco-

lation on sparse, locally treelike networks can be reformu-
lated as a message passing process, allowing us to solve for
average percolation properties such as the size of the
percolating cluster and the average size of the nonpercolat-
ing clusters. Tests on both computer generated and
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real-world networks show good agreement with numerical
simulations of percolation on the same networks. By
analyzing the message passing equations we have also
shown that the position of the percolation threshold on
treelike networks is given by the inverse of the leading
eigenvalue of the nonbacktracking matrix. On nontreelike
networks this result is not exact but it gives a bound on the
exact result.

The authors thank Cris Moore, Leonid Pryadko, and Pan
Zhang for useful conversations. This work was funded in
part by the National Science Foundation under Grants
No. DMS-1107796 and No. DMS-1407207 and by
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Note added.—Recently we learned of concurrent work by
Hamilton and Pryadko [25] in which a similar result for the
percolation threshold is derived.
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