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We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes
exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto
matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse
spectral radius of the graph’s adjacency matrix, and it is also generally tighter than the existing bound in
terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case
of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.
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Percolation theory is well established in physics as an
effective approach for dealing with strong disorder.
Examples include problems like quantum or classical
transport [1], bulk properties of composite materials [2],
and diluted magnetic transitions [3]. Percolation is also an
important phase transition in its own right [4–6].
An ability to process and store large amounts of

information led to an emergence of big data in many areas
of research and applications. This caused a renewed interest
in graph theory as a tool for describing complex con-
nections in various kinds of networks: social, biological,
technological, etc. [7–11]. In particular, percolation on
graphs has been used to describe Internet stability [12,13],
spread of contagious diseases [14–16], and computer
viruses [17]; related models describe market crashes [18]
and viral spread in social networks [19–21]. Percolation has
also been linked to decoding thresholds in certain classes of
quantum error-correcting codes [22,23].
In a graph, a degree of a vertex is the number of its

neighbors. Degree distribution is a characteristic easy to
extract empirically. A simple approach to network model-
ing is to study random graphs with the given degree
distribution [12,13,24–26]. In the absence of correlations,
the site percolation threshold on such a random graph is
[12,13,24,25]

pc ¼
hdi

hd2i − hdi ; ð1Þ

where hdmi≡P
id

m
i =n is the mth moment of the vertex

degree distribution and n is the number of vertices in the
graph. While this result is very appealing in its simplicity,
Eq. (1) has no predictive power for any actual network
where correlations between degrees or enhanced connec-
tivity (“clustering”) of nearby vertices may be present.
Substantial effort has been spent on attempts to account for
such correlations [27–30] in random graphs. However, such
approaches can only account for local correlations and are
flawed when applied to artificial networks like the power

grid, which may have a carefully designed robust backbone
(e.g., as in Example 1). Such strong correlations make
Eq. (1) or its versions accounting for local correlations
seemingly irrelevant.
There are only a handful of results on percolation for

general graphs [31,32]. These include the exact lower
bound for the site percolation threshold for any graph with
the maximum vertex degree dmax [33],

pc ≥ ðdmax − 1Þ−1; ð2Þ

which coincides with that for the bond percolation [32].
Both bounds are achieved on d-regular tree T d.
Unfortunately, for graphs with wide degree distributions,
Eq. (2) may underestimate the percolation threshold by far.
An estimate of the percolation threshold for dense graphs

(with some conditions) as the inverse spectral radius of the
graph, ρðGÞ≡ ρðAGÞ, defined as the maximum magnitude
of an eigenvalue of its adjacency matrix, AG, has been
suggested in Ref. [34]. Unfortunately, the conditions are
rather restrictive, and the estimate is clearly not very
accurate for sparse degree-regular graphs where the spectral
radius ρðGÞ ¼ d, as this estimate never reaches the lower
bound in Eq. (2).
Example 1.—Consider a tree graph T ≡ T d;r;L con-

structed by attaching r chains of length L to each vertex
of a d-regular tree T d; see Fig. 1. The percolation threshold
coincides with that of T d, pc ¼ pcðTdÞ ¼ ðd − 1Þ−1. On
the other hand, Eq. (1) gives pc → 0 if we take L ¼ 1,

(a) (b)

FIG. 1 (color online). (a) A d-regular tree used for the backbone
of the graph in Example 1. (b) The tree T d;r;L is grown from the
backbone by placing r chains of fixed length L (shown: d ¼ 3,
r ¼ 1, L ¼ 2) at each vertex of the backbone.
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r large, and pc → 1 if we take r ¼ 1, L large. Similarly, the
spectral radius is ρðT d;r;1Þ ¼ d=2þ ½ðd=2Þ2 þ r�1=2 (we
took L ¼ 1); the corresponding estimated threshold varies
in the range 0 < ½ρðGÞ�−1 ≤ 1=d, while the lower bound (2)
varies in the range 0 < pmin

c ≤ ðd − 1Þ−1.
Thus, Eq. (1), the lower bound (2), and the inverse

spectral radius ½ρðGÞ�−1 do not give accurate estimates of
the percolation threshold for this graph family.
In this Letter we suggest a tight lower bound for the site

percolation threshold pc on an infinite graph. It is given by
the inverse maximum eigenvalue of the linearized mean-

field (MF) equations, pc ≥ pðminÞ
c ¼ 1=λmax. These equa-

tions relate probabilities that neighboring bonds lead to
infinite clusters; they are exact for tree graphs which do not
have cycles. The matrix H corresponding to the MF
equations was first introduced by Hashimoto [35] to
generate nonbacktracking walks on graphs. The infinite-
dimensional matrix H is not symmetric; it is nontrivial that
the maximum eigenvalue λmax ≡ λmaxðHÞ be real or
nonzero. We show that the eigenvalue λmaxðHÞ gives a

physically meaningful bound 0 < pðminÞ
c ≤ 1 and can be

obtained as a solution of a finite eigensystem for any
connected infinite quasitransitive graph G, a graph-
theoretic analog of a translationally invariant system with
a finite number of inequivalent vertices. For such graphs we
also give a constructive proof that our threshold is indeed a
lower bound by building a tree T locally equivalent to the
original graph G, except that a cycle on G is mapped to an
open path connecting two equivalent vertices on T . We also
show that the inverse spectral radius ρðGÞ of the original
graph gives a smaller (inexact) lower bound for the
percolation threshold,

pc ≥ pðminÞ
c ≡ 1=λmaxðHÞ > 1=ρðGÞ: ð3Þ

Definitions.—A graph G ¼ ðV; EÞ with vertex set V ≡
VðGÞ and edge set E ≡ EðGÞ is called transitive if and only
if for any two vertices i, j in V there is an automorphism
(symmetry) of G mapping i onto j. Graph G is called
quasitransitive if there is a finite set of vertices V0 ⊂ V such
that any i ∈ V is taken into V0 by some automorphism of G.
We say that any vertex which can be mapped onto a vertex
i0 ∈ V0 is in the equivalence class of i0. The regular tree in
Fig. 1(a) is an example of a transitive graph; Fig. 1(b)
shows a quasitransitive graph with three inequivalent vertex
classes.
Let Γ be a group of automorphisms of a graph G. The

quotient graph G=Γ is the graph whose vertices are
equivalence classes VðGÞ=Γ ¼ fΓi∶i ∈ VðGÞg, and an edge
(Γi, Γj) appears in G=Γ if there are representatives i0 ∈ Γi
and j0 ∈ Γj that are neighbors in G, ði0; j0Þ ∈ EðGÞ. The
same definition also applies in the case of a digraph D,
except that we need to consider directed edges, e.g.,
ði0 → j0Þ ∈ EðDÞ.

In site percolation on a graph G, each vertex is open with
probability p and closed with probability 1 − p; two
neighboring open vertices belong to the same cluster.
Percolation happens if there is an infinite cluster on G.
When the graph is not connected, percolation happens
independently on different connected components. In the
following, we will consider only connected graphs.
Mean field equations: Let us first consider an infinite

tree T , a graph with no cycles. We will assume that the
vertex degrees are bounded, so that according to Eq. (2), the
corresponding percolation threshold be strictly nonzero,
pc ≡ pcðT Þ > 0. The percolation threshold can be found
exactly by constructing a set of recursive equations starting
with some arbitrarily chosen root [36]. For a given pair of
neighboring open vertices i and j (denoted i ∼ j), let us
introduce the probability Qij that i is connected to a finite
cluster through j. The corresponding recursive equations
have the form

Qij ¼
Y

l∼j∶l≠i
ð1 − pþ pQjlÞ; ð4Þ

where the product is taken over all neighbors l of j such that
l ≠ i, so that only hitherto uncovered independent branches
be included. The growth of a branch into an infinite
custer is impeded by the site l being closed (probability
1 − p), or being open but connecting to a finite branch
(probability pQjl).
Below the percolation threshold, p < pc, Eq. (4) is

satisfied identically with Qij ¼ 1. Right at the percolation
threshold, we expect the probability of an infinite cluster to
be vanishingly small, and the probabilities Qij can be
expanded:

Qij ¼ 1 − ϵij; i ∼ j; ð5Þ

where ϵij is infinitesimal. Expanding Eq. (4) to linear order
in ϵij, we obtain the following eigenvalue problem at the
threshold, p ¼ pc,

λϵij ¼
X

l∼j∶l≠i
ϵjl; λ≡ 1=pc: ð6Þ

The percolation threshold corresponds to the largest real
eigenvalue λ ¼ λmax corresponding to a non-negative
eigenvector, ϵij ≥ 0. To ensure the probability pc ≤ 1,
the eigenvalue needs to be sufficiently large, λmax ≥ 1.
Extending Eq. (4) to an arbitrary connected graph G, we

obtain a mean-field approximation to percolation, a gen-
eralization of the MF approach by Bethe [37]. The
probabilities Qij correspond to directed edges in G, mean-
ing that generally Qij ≠ Qji, and this pair of variables is
defined if and only if the corresponding component of the
adjacency matrix is nonzero, Aij ≠ 0. Let us introduce a

symmetric digraph ~G with the same adjacency matrix A.
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Namely, ~G has the same vertex set Vð ~GÞ as G and the set of
directed edges Eð ~GÞ⊆V ⊗ V where each undirected edge
ði; jÞ ∈ EðGÞ of the original graph G is replaced by a pair of
directed edges i → j and j → i. Then the matrix H of the
eigensystem (6) has the components labeled by the directed
edges of ~G,

Hu;v ¼ δjj0 ð1−δliÞ; u≡ i→ j; v≡ j0→ l; ð7Þ

where the second term in the product accounts for the
nonbacktracking condition i ≠ l. Matrix H was originally
introduced by Hashimoto [35] to generate nonbacktracking
walks on a digraph. This matrix can also be interpreted as
the adjacency matrix of the oriented line (di)graph (OLG)
[38] associated with the digraph ~G. To simplify the
notations, we will associate the Hashimoto matrix H ≡
HG in Eq. (7) directly with the graph G.
In the presence of cycles, the probabilities Qjl and Qjl0

for different branches leading to l ≠ l0 may no longer be
independent. Both branches could lead to the same finite or
infinite cluster. As a result of these correlations, the
probability that both j → l and j → l0 lead to finite clusters
is generally smaller than the product of corresponding
probabilities computed independently. Respectively, a non-
trivial solution of Eq. (4) may already exist for some
p < pcðGÞ. This implies that in the presence of cycles, the
maximum eigenvalue λmax of Eq. (6) would give a lower
bound on the percolation threshold, pcðGÞ ≥ 1=λmaxðHÞ,
which is the first part of the inequality (3).
It is easy to check that the spectral radius ρðAÞ of the

graph adjacency matrix A [which by definition equals the
spectral radius of the graph, ρðGÞ≡ ρðAGÞ] cannot be
smaller than any eigenvalue λ of H corresponding to a
nontrivial solution ϵij ≥ 0 of Eq. (6), which implies λ ≥ 0.
Indeed, for a nonempty graph, A is a symmetric non-
negative matrix with some nonzero matrix elements [thus
ρðAÞ > 0] and we need to check only the case λ > 0.
Starting with the corresponding nontrivial solution
ϵij ≥ 0, we introduce vertex variables xj ≡P

i∶i∼jϵij and
yj ≡P

l∶j∼lϵjl where summation is over all edges incident
to and incident from j, respectively. Summing Eq. (6) over
all j neighboring with i, we obtain

yi ¼ Aijyj − xi; ð8Þ

where the second term in the rhs accounts for nonback-
tracking condition l ≠ i. Now, by assumption the solution
ϵij ≥ 0 is such that ϵi0j0 > 0 for some edge (i0, j0).
Equation (6) then also implies that ϵj0l0 > 0 for some
l0 ∼ j0, so that at the vertex j0 both xj0 > 0 and yj0 > 0. If
we multiply Eq. (8) by yi and sum over all i, we get

λjjyjj2 ¼ yiAijyj − yixi < yiAijyj ≤ ρðAÞjjyjj2; ð9Þ

where jjyjj2 ≡ y2i > 0. This proves [cf. Eq. (3)] the follow-
ing theorem.
Theorem 1.—The spectral radius of the adjacency matrix

AG of any connected nonempty graph G is strictly larger
than the maximum eigenvalue of the Hashimoto matrix HG
corresponding to a nonzero eigenvector with non-negative
components, ρðAGÞ > λmaxðHGÞ.
Results for quasitransitive graphs: The discussion of the

MF equations (6) was at the “physical” level of rigorous-
ness. We argued that the percolation threshold for an
arbitrary infinite connected graph should be bounded from
below by the inverse maximum positive eigenvalue
λmaxðHÞ of Eq. (6) corresponding to ϵij ≥ 0, and we proved
that this bound is in turn larger than the inverse spectral
radius of the graph.
Yet some questions remain: Eigensystem (6) has a

nonsymmetric matrix H. Under what conditions do we
expect to get a real-valued eigenvalue λmaxðHÞ ≥ 1 which
would correspond to a valid percolation threshold? Could
we obtain λmaxðHÞ as a solution of some finite eigenvalue
problem, or at least as a limit of some sequence of such
problems? If yes, what are the convergence conditions? As
an example, Theorem 2 states that for any finite tree, Eq. (6)
gives λmaxðHÞ ¼ 0. Of course, this makes perfect sense
since these equations are exact on any tree, and the
probability to have an infinite cluster on a finite tree is
zero. However, the downside is that, at least in the case of
an infinite tree graph, it is not sufficient to consider
percolation on finite subgraphs.
In the following, we concentrate on the special case of

infinite connected quasitransitive graphs, and we show that
the maximum real eigenvalue λmaxðHÞ of the corresponding
Hashimoto matrix (7) is finite, lies in the physical range
λmaxðHÞ ≥ 1, and can be obtained by solving a single finite-
dimensional spectral problem.
Let us first consider the eigensystem (6) for a finite graph

G. While the Hashimoto matrix HG in Eq. (7) is non-
symmetric, it is finite dimensional and has non-negative
matrix elements. The properties of the maximal real-valued
eigenvalue λmax of such matrices is addressed by the Perron-
Frobenius theory of non-negative matrices [39–41]. In
particular, an eigenvalue corresponding to a non-negative
eigenvector always exists and it equals the spectral radius of
H, λmaxðHÞ ¼ ρðHÞ, although in general one could have
ρðHÞ ¼ 0.
For any m ×m matrix H with non-negative matrix

elements, a sufficient condition for having ρðHÞ > 0 is
expressed [41] in terms of the digraph DH with the
adjacency matrix corresponding to nonzero elements of
the square matrix H. Namely, there is a directed edge
u → v whenever Huv > 0 (or a loop u → u in the case of a
diagonal matrix element Huu > 0). In the case of the
Hashimoto matrix, this graph is the OLG associated with
the original graph [see the discussion below Eq. (7)]. The
spectral radius of H is positive, ρðHÞ > 0, if the digraph
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DH is strongly connected. This requires that for any pair
of vertices u, v, there must be a directed path
(u0 ¼ u; u1;…; uf ≡ v) connecting u and v such that
us−1 → us, s ¼ 1;…; f is in the edge set of DH. In such
a case, we also know that the eigenvalue λmax ¼ ρðHÞ is
nondegenerate, it is the only one with the magnitude equal
to the spectral radius, jλj ¼ ρðHÞ, and the corresponding
eigenvector has all positive components [39–41].
We prove the following theorem.
Theorem 2.—For any finite connected graph G, the

spectral radius of the Hashimoto matrix HG is zero if
and only if G contains no cycles. Otherwise, ρðHGÞ ≥ 1.
The eigenvector corresponding to λ≡ λmax ¼ ρðHGÞ is
non-negative.
The interpretation is simple: On a finite tree, any non-

backtracking walk eventually terminates at a leaf (a degree-
one vertex) with no outgoing edges; thus Eq. (6) with λ ≠ 0
has only trivial solutions ϵij ¼ 0. With one or more cycles
present, recursively plucking off any leaves, we arrive at a
backbone graph B with minimum degree dminðBÞ ≥ 2; the
corresponding Hashimoto matrix HB is strongly connected
and its spectral radius is limited from below by
ρðHBÞ ≥ dminðBÞ − 1 ≥ 1. Putting the leaves back recovers
the original graph but does not affect the spectral radius of
the Hashimoto matrix. The full proof is given in the
Supplemental Material [42].
We are not aware of an extension of the Perron-

Frobenius theory to infinite matrices. However, in the case
of a quasitransitive graph which only has a finite set of
inequivalent vertices, it is reasonable to expect that the
solution ϵij ≥ 0 of Eq. (6) has the same symmetry as the
original graph. Namely, for any pair of directed edges i → j
and i0 → j0 which can be mapped to each other by an
automorphism of G, we request

ϵij ¼ ϵi0j0 : ð10Þ

Such an ansatz reduces Eq. (6) to a finite-dimensional
eigensystem. Depending on the details, the corresponding
matrixM may have elements which are greater than one, or
nonzero elements along the diagonal. As we discuss in the
Supplemental Material [42], the nonzero elements of M
uniquely correspond to nonzero elements of the Hashimoto
matrix HG=Γ corresponding to the quotient graph G=Γ with
respect to the group Γ of automorphisms of G. When the
original infinite graph is connected, G=Γ necessarily has
cycles. We prove the following theorem.
Theorem 3.—Consider an infinite connected quasitran-

sitive graph G with the group of automorphisms Γ. The
invariant ansatz (10) with ϵij ≥ 0 gives a valid solution of
the MF Eq. (6). The corresponding eigenvalue λ ¼ ρðMÞ
satisfies the inequalities

λmaxðHGÞ ¼ ρðMÞ ≥ ρðHG=ΓÞ ≥ 1: ð11Þ

Finally, we give a constructive proof of the first part of
the inequality (3).
Theorem 4.—The percolation threshold for any infinite

connected quasitransitive graph G is bounded from below
by the inverse maximum eigenvalue of the corresponding
Hashimoto matrix corresponding to a non-negative eigen-
vector, pcðGÞ ≥ 1=λmaxðHGÞ.
The approach is to construct a tree graph T which is

locally indistinguishable from the original graph G, except
that a closed walk on G goes over to a walk connecting
equivalent points on T . This is done by the repeated
application of single cycle unwrapping (SCU).
Definition 1 (SCU).—Given a connected graph G and a

bond b≡ ðu; vÞ ∈ EðGÞ, such that the two-terminal graph
G0 ≡ (VðGÞ; EðGÞnb) with source at v and sink at u is
connected, define the cycle-unwrapped graph CbG as the
series composition of an infinite chain of copies G0

i, i ∈ Z
of the graph G0, with the source of G0

i connected to the sink
of the G0

iþ1.
The SCU is illustrated in Fig. 2. Notice that for a graph

with more than one cycle, unwrapping at b removes one
cycle but creates an infinite number of copies of the
remaining cycles. Nevertheless, for a locally finite
graph, we prove that a countable number of SCUs is
needed to remove all cycles. Further, we prove (see
Supplemental Material [42]) that an SCU does not change
the maximum eigenvalue of the Hashimoto matrix,
λmaxðHGÞ¼λmaxðHCbGÞ, whereas the percolation threshold
cannot go up. Overall, this gives a constructive proof of
Theorem 4.
In conclusion, we suggested a spectral MF lower bound

for the threshold of site percolation on an infinite graph.
This bound accounts for local structure of the graph and
should be asymptotically exact for graphs with no short
cycles. This bound goes over to the known lower bound (2)
for degree-regular graphs and otherwise improves on
Eq. (2). We also demonstrated that the inverse spectral
radius of the graph which was suggested previously as an
estimate for the percolation threshold is always strictly
smaller than our lower bound. In the case of a quasitransi-
tive graph, a graph-theoretical analog of a translationally
invariant system, we proved that the bound is in a
physically meaningful range and can be found as a solution
of a finite spectral problem. This result is directly appli-
cable for site percolation on any periodic lattice [43].

(b)(a) (c)

FIG. 2 (color online). Illustration of SCU. (a) A graph G with a
nonbridge bond b≡ ðu; vÞ highlighted. (b) The two-terminal
graph G0. (c) The resulting graph CbG is a series composition of an
infinite chain of copies of G0.
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Our results can be easily extended to the cases of
Bernoulli (bond), combined site-bond, or nonuniform
percolation, where the probabilities to have an open vertex
may differ from site to site. A similar technique can also be
used to prove the conjecture on the location of the threshold
for vertex-dependent percolation on directed graphs [44].
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by the NSF under Grant No. 1018935. L. P. P. also
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Note added.—Recently, we were alerted to a following
Letter by Newman, Karrer, and Zdeborova [45], who
arrived at some of the same results using different
arguments.
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