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We quantitatively discuss the influence of quenched disorder on the ferromagnetic quantum phase
transition in metals, using a theory that describes the coupling of the magnetization to gapless fermionic
excitations. In clean systems, the transition is first order below a tricritical temperature T tc. Quenched
disorder is predicted to suppress T tc until it vanishes for residual resistivities ρ0 on the order of several
μΩ cm for typical quantum ferromagnets. We discuss experiments that allow us to distinguish the
mechanism considered from other possible realizations of a first-order transition.
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There is substantial experimental evidence for the
quantum ferromagnetic transition in clean metals to be
generically of first order. Examples of systems that were
expected to display a quantum critical point, but instead
display a first-order transition if the Curie temperature is
suppressed, are MnSi [1,2], ZrZn2 [3], UGe2 [4–6], and
URhGe [7]. All of these are low-temperature ferromagnets
(although the magnetic moment in some of them is not
small) with Curie temperatures Tc between ≈10 K
(URhGe) and ≈50 K (UGe2) and magnetic moments per
formula unit of about 0.17, 0.4, and 1.5μB for ZrZn2, MnSi
and URhGe, and UGe2, respectively. Tc is tunable by
hydrostatic pressure or, for URhGe, by an external mag-
netic field transverse to the easy axis. A tricritical point
separates a line of second-order transitions above the
tricritical temperature T tc (≈5, 10, 1, and 24 K in ZrZn2,
MnSi, URhGe, and UGe2, respectively) from a line of first-
order transitions below, and in all of these materials
tricritical wings have been observed in an external magnetic
field. The respective values of the critical field at the wing
tips are Hc ≳ 0.05, ≈0.6, ≈1, and ≈10 T. The qualitative
phase diagram is shown in the rightmost panel in Fig. 1.
Evidence for a first-order quantum phase transition (QPT)
at low temperatures has been found in many other systems,
but the phase diagram has not been mapped out completely,
or the tricritical point is not accessible (as in UCoAl [8]).
These observations are remarkable because of their

universality. The only known instances in which the
QPT to a homogeneous ferromagnet is not observed to
be of first order are the quasi-one-dimensional material
YbNi4P2 [9], where the physics is expected to be quite
different from that of true bulk metals, and various
disordered materials where the transition is tuned by
chemical composition, e.g., URu2−xRexSi2 [10]. We will
come back to the weakly disordered compounds NixPd1−x
[11] and ðCr1−xFexÞ2B [12]. Also remarkable is the stark

disagreement between experiment and early theories. The
quantum ferromagnetic transition as described by Stoner’s
mean-field theory [13] is generically continuous. It was
later considered as an example by Hertz in his seminal
renormalization-group (RG) treatment of QPTs [14], which
also predicted a continuous transition with mean-field
critical behavior.
A theory that explains and, indeed, predicted the

observed universality was developed in Refs. [15–17]. It
relies on the coupling between the magnetization and soft
or gapless fermionic excitations with a ballistic frequency-
momentum relation that exist in any clean metal at T ¼ 0. It
leads to an equation of state of the form

h ¼ rm − vm3 lnð1=m2Þ þ um3; ð1Þ

where m is the magnetization in suitable units, h is the
external field, r is the control parameter, and v and u are
Landau parameters. The nonanalytic m3 lnð1=mÞ term is
the result of m coupling to the soft modes in d ¼ 3; more
generally its form is md. Crucially, v > 0, which leads to a
first-order transition at some r > 0. This universal mecha-
nism has been confirmed by a variety of other techniques
[18–20]. T > 0 gives the soft modes a mass, which cuts off
the lnm nonanalyticity and leads to a tricritical point
(rightmost panel in Fig. 1). Quenched disorder has two
effects. First, it also cuts off lnm. Second, a coupling to
diffusive soft modes leads to an md=2 nonanalyticity whose
sign is opposite of that of the nonanalytic term in the
clean case. For sufficiently strong disorder, in d ¼ 3, one
finds [21]

h ¼ rmþ w

ðkFlÞ3=2
m3=2 þ um3; ð2Þ

with w > 0 another parameter, kF the Fermi wave number,
which sets the microscopic length scale, and l the elastic
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mean-free path. This leads to a continuous transition with
non-mean-field exponents (leftmost panel in Fig. 1).
Equations (1) and (2) both represent renormalized Landau
theories, which replace the fluctuating order-parameter field
by its mean. Since the order-parameter fluctuations at the
QPTare above their upper critical dimension (dþc ¼ 1 (0) for
the clean (disordered) case [14]), this should not affect the
nature of the QPT. Indeed, in the disordered case a RG study
has shown that order-parameter fluctuations leave the power
laws described by Eq. (2) intact, although they lead to non-
power-law modifications of the leading scaling behav-
ior [22,23].
While Eq. (1) is in qualitative agreement with all

experiments on clean samples, there still are open ques-
tions. First, Eqs. (1) and (2) represent only the extremes of
ultraclean and strongly disordered systems. Many experi-
ments fall in between these two cases, e.g., NixPd1−x,
which shows a second-order transition with mean-field
exponents at x ¼ 0.027 [11]. Second, the mechanism
proposed in Ref. [15] is not the only possibility for a
first-order transition; e.g., in classical compressible mag-
nets the coupling between the magnetization and phonons
can lead to a first-order transition [24]. This mechanism is
not as universal as the one leading to Eq. (1), but the
authors of Refs. [25–27] have argued that an adaptation to
the quantum transition can explain the observations, at least
in the case of the pressure-tuned quantum ferromagnets.
It is thus desirable to develop criteria that allow for a

discrimination between the different theoretical ideas. In

this Letter, we show that the disorder dependence of the
phase diagram allows for such a discrimination. A phonon-
based effect is not expected to qualitatively change by
introducing disorder into the sample, in part because the
electron-phonon interaction is only weakly affected by
disorder [28]. The mechanism of Ref. [15], on the other
hand, is crucially affected by disorder, since in the strong-
disorder limit the equation of state changes to Eq. (2). As
we will show, our theory predicts three distinct disorder
regimes. In a weak-disorder regime the transition is first
order, but T tc is gradually suppressed until it vanishes at a
critical value of the disorder. For common quantum
ferromagnets, this is expected to happen for residual
resistivities ρ0 on the order of several μΩ cm. The resulting
quantum critical point in an intermediate-disorder regime
displays mean-field exponents consistent with Hertz theory
in the observable critical region, although asymptotically
close to the transition there will be a crossover to the non-
mean-field critical behavior of Ref. [21]. With increasing
disorder, the crossover moves away from the transition and
becomes observable for values of ρ0 on the order of tens of
μΩ cm. Finally, in a strong-disorder regime with ρ0 on the
order of hundreds of μΩ cm the non-mean-field critical
behavior will be present in the entire critical region.
However, for disorder that strong, other effects may come
into play. Our predictions can be tested by introducing
quenched disorder, e.g., by means of irradiation, into any of
the materials that display a first-order QPT, and following
the changes in the phase diagram with increasing disorder.
To achieve these goals, we have constructed an equation

of state that interpolates between Eqs. (1) and (2) and
generalizes them to finite temperatures. We first state and
discuss this equation of state and then sketch its derivation.
It takes the form

h ¼ rmþ w

ðkFlÞ3=2
m3=2gðkFlm; ct=mÞ

− vm3 ln

�
1

m2=m2
0 þ ðσ0=kFlþ tÞ2

�
þ um3; ð3aÞ

which reduces to Eqs. (1) and (2) in the limits kFl → ∞, 0.
We will refer to the second and third term on the right-hand
side as the diffusive and ballistic nonanalyticity, respec-
tively; m, h, and t are the dimensionless magnetization,
magnetic field, and temperature, respectively, defined as
follows. Let μ be the magnetization measured in μB per
volume, H the external field, and T the temperature. Let ne
be the conduction electron density and TF be the Fermi
temperature (or more generally, the microscopic energy
scale). Then, m ¼ 8μ=πne, h ¼ μBH=kBTF, and
t ¼ 3πT=TF; v and w depend on a coupling constant γt
that measures the strength of conduction-electron correla-
tions, with γt ≪ 1 and γt ¼ Oð1Þ corresponding to weakly
and strongly correlated systems, respectively. Another
coupling constant c ¼ Oð1Þ describes the coupling

FIG. 1 (color online). Evolution of the phase diagram of a
metallic quantum ferromagnet in the space spanned by temper-
ature (T), magnetic field (h), and the control parameter (r) with
increasing disorder. Shown are the ferromagnetic (FM) and
paramagnetic (PM) phases in the h ¼ 0 plane, lines of second-
order transitions (solid red), the tricritical point (TCP), and
surfaces of first-order transitions (“tricritical wings”) that end
in quantum critical points (QCP) in the T ¼ 0 plane. With
increasing disorder, the tricritical temperature decreases, the
wings shrink, and above a critical disorder strength a QCP is
realized in zero field.

PRL 113, 207201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

207201-2



between the magnetization and the conduction-electron
spin density. In terms of γt and c one finds, for small γt,
v ¼ cγ4t and w ¼ cγt. r ≪ 1 is the dimensionless control
parameter for the transition, and u ¼ Oð1Þ is a Landau
parameter. m0 and σ0 set the scales for the magnetic
moment and the disorder, respectively. They depend on
the band structure and the correlation strength; from
general arguments one expects 0.1≲ σ0 ≤ 1 and
m0 ≳ 10; see the discussion below. Finally,

gðy; zÞ ¼ 1

g0

Z
1=y

0

dx
Z

∞

z
dω

ffiffiffi
x

p
ω½2ðxþ ωÞ2 þ 1�

ðxþ ωÞ3½ðxþ ωÞ2 þ 1�2
ð3bÞ

with g0 ¼ π=3
ffiffiffi
2

p
≈ 0.74 is normalized such that gð0; 0Þ ¼

1. gðy; 0Þ is well approximated by

gðy; 0Þ ≈ 1=½1þ y3=2=ð9g0 þ y=g0Þ�: ð3cÞ

We now discuss typical values for the various parameters
in Eq. (3a), initially for a clean system. With kF ≈ 1 Å−1,
and a formula unit volume of about 50 Å3, we find a
dimensionless saturation magnetization ranging from
m ≈ 0.25 for ZrZn2 to m ≈ 2.3 for UGe2. Choosing
u ¼ 0.85, γt ¼ 0.5 (fairly strong correlation), and c ¼ 1,
we have v ¼ 0.06. The tricritical temperature is T tc ¼
ðTF=3πÞe−u=2v [15]. With TF ≈ 105 K, we have
T tc ≈ 10 K, which is the correct order of magnitude for
ZrZn2, MnSi, and UGe2. A slightly lower value of γt ≈ 0.45
yields T tc ≈ 1 K, as observed in URhGe. At the first-order
transition at T ¼ 0, the magnetization changes discontin-
uously from zero to m1 ¼ m0e−ð1þu=vÞ=2 [15]. For m0

between 75 (for ZrZn2) and 350 (for UGe2), this yields
m1 ≈ 0.05–0.25, which is a reasonable fraction of the
saturation magnetization in these materials. The critical
field at the tips of the tricritical wings is given by hc ¼
ð4=3Þe−13=4m3

0ve
−3u=2v [16]. With parameters as above,

this yields values from Hc ≈ 0.1 T to Hc ≈ 10 T. This is
again the correct order of magnitude compared with the
experimental observations [2,3,5].
Now consider quenched disorder. A Drude formula for

ρ0 with kF ≈ 1 Å−1 yields kFl ≈ 1000 μΩ cm=ρ0. kFl thus
ranges from ≳104 in a clean metal (ρ0 ≈ 0.1 μΩ cm) to
about 10 in a poor metal (ρ0 ≈ 100 μΩ cm). This in turn
implies that values of kFlm between roughly 2.5 and
2 × 104 are realizable, withm the saturation magnetization.
With m the actual magnetization, the lower limit is
accordingly lower, depending on the minimal magnetiza-
tionm1 at the first-order transition, if any. From Eq. (3c) we
see that kFlm ≈ 5 is the demarcation between two different
regimes, which falls well within this range.
All of the above, and everything that follows, are just

rough order-of-magnitude estimates. With this in mind, we
can distinguish the following regimes, classified according
to the values of kFl (clean vs dirty samples) and m (weak

vs strong magnetism). They follow from the observation
that the diffusive and ballistic nonanalyticities, at T ¼ 0,
are operative (inoperative) for kFlm≲ 5 (≳5) and kFlm≳
m0σ0 (kFlm≲m0σ0), respectively.
Regime I (clean or strong).—Exhibits kFlm≳m0σ0.

The diffusive nonanalyticity is inoperative, the equation of
state is given by Eq. (1), and the transition is first order
with m1 ¼ m0e−ð1þu=vÞ=2 ≤ m. For consistency, we must
have kFlm1 ≳m0σ0. With u and v as above and σ0 ≈ 1=5,
this yields kFl≳ 300, or ρ0≈ several μΩ cm.
Regime IIa (intermediate).—Exhibits 5≲ kFlm≲

m0σ0. In this transient regime both nonanalyticities are
inoperative, and the transition appears continuous with
mean-field exponents in a range of m values. However, as
m decreases, the system eventually enters regime IIb or III.
Regime IIb (intermediate).—Exhibits kFlm≲ 5 and

kFl≳ ðkFlÞ�, with ðkFlÞ� defined below. The ballistic
nonanalyticity is inoperative, the equation of state is given
by Eq. (2), and the transition is second order with the
asymptotic critical behavior characterized by the non-
mean-field exponents of Ref. [21]. However, farther away
from the transition, this behavior will cross over to ordinary
mean-field behavior at a disorder-dependent value r� of r.
The crossover occurs when the last two terms in Eq. (2) are
about equal. Having the crossover occur at r ¼ r� thus
requires a disorder given by kFl ¼ kFl� ¼ w2=3=
u1=6jr�j1=2. If we require r� ¼ 0.01 and choose γt ¼ 0.5
and u ¼ 1 as before, we have kFl� ≈ 6, or ρ�0 ≈ 150 μΩ cm.
ρ�0 is the disorder that separates regime IIb, where the
transition is continuous with effectively mean-field expo-
nents, from regime III. Note that ρ�0 depends on the
correlation strength via w; for γt ¼ 0.1 (weak correlation)
one has ρ�0 ≈ 500 μΩ cm.
Regime III (dirty or weak).—Exhibits kFlm≲ 5 and

kFl≲ ðkFlÞ�. The equation of state is dominated by the
diffusive nonanalyticity, and the transition is continuous
with non-mean-field critical exponents in the entire critical
region. This requires ρ0 > ρ�0, with ρ�0 ranging from
approximately 100 μΩ cm for strongly correlated materials
to hundreds of μΩ cm for weakly correlated ones.
At a nonzero temperature, we see from Eq. (3a) that a

disorder resulting in kFl ¼ σ0TF=3πT tc has the same effect
as T ¼ T tc in a clean system. That is, ρ0 ≳ 104T tc=σ0TF≈
several μΩ cm will suppress T tc to zero, consistent with the
above estimate for the destruction of the first-order tran-
sition at T ¼ 0. The tricritical wings shrink, and eventually
disappear, commensurate with the suppression of T tc. This
prediction for the evolution of the phase diagram is shown
in Fig. 1.
We now have the following predictions for the effects of

quenched disorder on typical strongly correlated quantum
ferromagnets: Disorder decreases T tc and suppresses it
altogether for a residual resistivity ρ0 on the order of several
μΩ cm. For larger ρ0, the QPT will be continuous and
appear mean-field-like in a substantial disorder range,
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ρ0 ≲ 100 μΩ cm, with a crossover to non-mean-field
behavior only extremely close to the transition. For even
larger ρ0 the critical behavior is characterized by the non-
mean-field exponents of Refs. [21–23]. However, for
disorder that strong quantum Griffiths effects are expected
to be present and compete with the critical behavior [29]; to
distinguish between the two, one needs to measure the
critical behavior of the magnetization. We stress that these
predictions are semiquantitative in nature. The important
point is the existence of the three regimes; the disorder
strengths that delineate them are expected to show sub-
stantial variations from material to material. We also note
that quenched disorder can suppress a tricritical point in a
purely classical model [30]. This mechanism is not depen-
dent on the presence of conduction electrons and is
expected to be characterized by different disorder scales
than the one discussed here.
Some experimental evidence exists in favor of this

scenario. For ZrZn2, the QPT was initially found to be
second order [31], but with increasing sample quality a
first-order transition emerged [3]. For UGe2, measured
values of T tc range from 24 [5] to 31 K [7], which is
possibly related to the sample quality, and in URhGe higher
T tc values were found for cleaner samples [32]. All of these
materials are strongly correlated as evidenced by their
unusual electronic properties independent of the quantum
magnetism. Finally, the observation of a quantum critical
point with mean-field exponents in NixPd1−x [11] and
possibly in ðCr1−xFexÞ2B [12], where the transition occurs
at a small value of x, can be understood if one realizes that
these systems are likely in the intermediate regime II. While
these observations are encouraging, no systematic exper-
imental study of the influence of quenched disorder on the
phase diagram of quantum ferromagnets exists. Such an
experiment would allow us to discriminate between the
explanation of the first-order transition discussed above and
alternative proposals that predict only a weak disorder
dependence of T tc.
We now sketch the derivation of Eq. (3a). The relevant

soft fermionic modes, as functions of wave vector k and
bosonic Matsubara frequency Ωn, are diffusive for disor-
dered electrons and ballistic for clean ones [33,34],

Ddiff ¼
1

Ωn þDk2
; Dball ¼

1

Ωn þ vFjkj
ð4aÞ

with D ¼ v2Fτ=3 the diffusion coefficient, τ the elastic
mean-free time, and vF the Fermi velocity. The soft-mode
propagatorD can be modeled byDdiff for jkj < 1=l and by
Dball for jkj > 1=l, with l ¼ vFτ the elastic mean-free
path. The magnetization m couples to the soft fluctuations
and cuts off the singularities that result from integrating
over D, which leads to nonanalytic dependences on m.
Integrating out the soft modes yields a fluctuation correc-
tion to the free energy density f of the form [33]

Δf ¼ 2

V

X
k

T
X∞
n¼1

lnNðk;Ωn;mÞ: ð5Þ

At T ¼ 0 the sum over Ωn turns into an integral over a
continuous variable ω, and the effect of a nonzero temper-
ature can be modeled by the replacement ω → ωþ 2πT.
The fluctuation contribution to the equation of state is
obtained by differentiating Δf with respect to m. We
measure m in units of the conduction electron density ne
and the magnetic field h in units of kBTF=μB. The Landau
parameters r and u are then dimensionless. Up to factors of
Oð1Þ, the resulting equation of state takes the form of
Eq. (3a) with m0 ≈ 7=γt and σ0 ¼ 1. These two values are
based on a nearly free-electron model for the conduction
electrons. For real materials, m0 is expected to be an
independent parameter that depends on microscopic
details. It sets the scale for the magnetic moment, which
differs by a factor of 10 between, e.g., ZrZn2 and UGe2; σ0
in general depends on the correlation strength and is ≤ 1.
The reason is that in a strongly correlated material two
electrons with opposite spins cannot simultaneously take
advantage of a disorder-induced potential well, because of
the strong repulsion between the electrons. This is con-
sistent with the fact that, in the absence of symmetry-
breaking fields, interactions cause the disorder to get
renormalized downward [35,36]. Correlations will thus
effectively weaken the effects of the disorder; values of
σ0 between 1 (no correlation) and 0.1 (strong correlation)
are reasonable based on the RG flow equations of Ref. [35].
Finally, the soft-mode effects are stronger the lower the
dimension; in d ¼ 2, the m3 lnð1=mÞ term in Eq. (3a) turns
into anm2 term. For the diffusive modes, d ¼ 2 is the lower
critical dimension, and the effects of quenched disorder
become strong and very complex [36].
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