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When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave
via the ponderomotive force can lead to optical wave mixing phenomena similar to those used in crystals
and photorefractive materials. A new comprehensive analytical description of the modification of the
polarization state of laser beams crossing at arbitrary angles in a plasma is presented. It is shown that
a laser-plasma system can be used to provide full control of the polarization state of a separate “probe” laser
beam; simple analytical estimates and practical considerations are provided for the design of novel
photonics devices such as laser-plasma polarizers and wave plates.
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Optical wave mixing phenomena in plasmas have been
extensively studied for more than forty years. Proposed
applications have ranged from beat-wave particle accel-
eration [1,2] to plasma diagnostics [3,4] and laser pulse
compression [5] or amplification [6]. More recently, novel
techniques using plasmas have been proposed and dem-
onstrated to control the propagation and properties of
intense laser beams at intensities many orders of magnitude
beyond the breaking point of “traditional” optics. For
example, plasma mirrors have been successfully used to
increase the contrast of intense laser pulses [7–10]. Plasma
gratings are also now routinely used at the National Ignition
Facility (NIF) [11] to dynamically deflect the flux of laser
energy inside inertial confinement fusion (ICF) targets, in
order to tune the implosion symmetry of the spherically
imploded nuclear fuel [12,13] or to avoid regions most
prone to backscatter losses inside the target [14,15]. Plasma
gratings have also been used recently in ultraintense,
ultrashort laser pulse experiments to diagnose the size of
an x-ray source in the target plane [16].
In this Letter, we show that controlled optical wave

mixing between a “probe” and a “pump” laser beam in a
plasma can allow complete control of the polarization state
of the probe beam. The probe’s polarization can be adjusted
by modifying the amplitude or the phase of its electric field;
this is controlled by varying the pump intensity and tuning
the phase velocity of the resulting beat wave via small
wavelength shifts between the lasers. Using a Jones
matrix analysis, we present an analytical description of
the modification of the polarization for arbitrary crossing
angles. These results are relevant to a wide variety of pump-
probe laser-matter interaction experiments, as well as multi-
laser-beam experiments for high energy density (HED)
science or ICF on large scale laser facilities. We give simple
analytical estimates and practical considerations for the
design of novel photonics devices such as laser-plasma
polarizers and wave plates.

The wave-mixing geometry is shown in Fig. 1. Two laser
beams labelled 0 (the “pump”) and 1 (the “probe”) with
arbitrary polarizations and with frequencies ω0;ω1 and
wave vectors k0; k1 cross at an angle ψ ; we define z as the
bisector between k0, k1, and assume a copropagating
geometry (ψ < π=2). We use the normalized vector poten-
tials of the laser electric field, a ¼ eA=ðmec2Þ, where the
electric field is E ¼ −∂A=ðc∂tÞ þ∇Φ; in practical units,
a≃ 8.55 × 10−10ðIλ2μÞ1=2 where I is the laser intensity
in W=cm2 and λμ its wavelength in microns. For each
beam jð¼ 0; 1Þ, we define the unit vectors (pj, sj) in
each plane of polarization such that sj is perpendicular to
the plane of incidence (s0 ¼ s1 ∝ k0 × k1), and pj is in the
plane of incidence. The total electromagnetic potential is
aðr; tÞ ¼ Re½a0ðzÞeiψ0 þ a1ðzÞeiψ1 �, where ψ j ¼ kj · r−ωjt
and the envelopes a0, a1 are assumed to be at steady state
and vary only along z. The plasma has an electron density
ne and frequency ωpe ¼ ½4πnee2=me�1=2 and refractive
index ηj ¼ ð1 − ω2

pe=ω2
jÞ1=2 (with kj ¼ ηjωj=c).

As the two beams interact, the ponderomotive force of
their beat wave drives a density (and, thus, refractive index)
modulation in the plasma at the phase ψb ¼ ψ0 − ψ1 ¼
kbx − ωbt, where kb ¼ k0 − k1 and ωb ¼ ω0 − ω1. We
decompose the electron density into a background density
(assumed constant in the following) and the modulation
due to the beat wave: ne ¼ n0 þ Re½δneiψb �. The steady-
state expression of the density modulation is δn=n0 ¼
− 1

2
Kk2bc

2ω−2
p0a0 · a

�
1 [17,18], where ωp0 ¼ ½4πn0e2=me�1=2

and K ¼ χeð1þ χiÞ=ð1þ χe þ χiÞ; the spatial variations of
jδnðzÞj are assumed small compared to k−1b (∼λ0). The
electron and ion (α ¼ e; i) susceptibilities at thermody-
namic equilibrium are χα ¼ − 1

2
ðkbλDαÞ−2Z0½vb=ð

ffiffiffi
2

p
vTαÞ�,

where Z is the plasma dispersion function, vb ¼ ωb=kb the
beat wave phase velocity, vTα ¼ ðTα=mαÞ1=2 the thermal
velocity, Tα and mα the temperature and mass, and
λDα ¼ vTα=ωpα the Debye length.

PRL 113, 205001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

0031-9007=14=113(20)=205001(5) 205001-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.205001
http://dx.doi.org/10.1103/PhysRevLett.113.205001
http://dx.doi.org/10.1103/PhysRevLett.113.205001
http://dx.doi.org/10.1103/PhysRevLett.113.205001


UsingMaxwell equations, the following one-dimensional
coupled equations are derived for the vector envelopes:

2k1za01 ¼ −i
ω2
p0

2c2
δn�

n0
a0; ð1Þ

2k0za00 ¼ −i
ω2
p0

2c2
δn
n0

a1; ð2Þ

where kjz ¼ kj · z, the prime denotes the derivative along z
and the star represents the complex conjugate. These
equations are similar to those used for coupled-mode theory
for holography [19] and are valid for arbitrary crossing
angles as long as the variations of the envelopes a0; a1 along
the z direction are small compared to the laser wavelengths.
Multiplying the equations by the unit vectors (p1, s1) and
(p0, s0) allows us to rewrite these coupled equations in terms
of the Jones vectors of the two waves in their (pj, sj)
polarization bases,

jaji ¼
�
ajp
ajs

�
;

in the following, the “bra” notationwill denote the conjugate
transpose (so that hajjaji ¼ jajj2). The density perturbation
can be expressed as δn=n0 ¼ − 1

2
Kk2bc

2ω−2
p0ha1jπ0i, where

jπ0i ¼
�
a0p cosðψÞ

a0s

�

is the projection of a0 onto the plane (p1, s1) [cf. Fig. 1(b)].
If we further assume that the wavelengths of the two beams
are close to each other, ω0 ≃ ω1, so that k1 ≃ k0 ¼ η0ω0=c,
k≃ 2k0 sinðψ=2Þ, and k1z ≃ k0z ¼ k0 cosðψ=2Þ, then the
coupled equations take the simple form

ja01i ¼ iγ�hπ0ja1ijπ0i; ð3Þ
ja00i ¼ iγhπ1ja0ijπ1i; ð4Þ

where z has been normalized by k0. The coupling coefficient
is γ ¼ 1

2
K sinðψ=2Þ tanðψ=2Þ, and

jπ1i ¼
�
a1p cosðψÞ

a1s

�

is the projection of a1 onto (p0, s0).
That system of equations describes the coupled evolu-

tions of four complex field envelopes (the s and p
components of each of the two laser beams) and are similar
to the general case of two-wave mixing in photorefractive
media [20–22]; here, unlike for some crystals, the initial
isotropy of the plasma does not allow for cross coupling
between the s and p components. Some conservation
laws can be readily derived, e.g., ðja1j2Þ0 ¼ −ðja0j2Þ0 ¼
2ImðγÞjha1jπ0ij2 (total energy conservation), and ða21p þ
a20pÞ0 ¼ ða21s þ a20sÞ0 ¼ 0 (i.e., energy conservation of the s
and p components).
The system of Eqs. (3)–(4) does not have a closed

solution for arbitrary crossing angles ψ , but much physical
insight can be gained by assuming that the pump is
unaffected by the interaction (ja0j2 ≫ ja1j2). Equation (3)
can be recast into ja01i ¼ M0ja1i where M0 ¼ iγ�jπ0ihπ0j
is a 2 × 2 matrix now assumed independent of z. The
solution for ja1i for an interaction from z ¼ 0 to L is
obtained by taking the exponential of M0. The eigenvalues
of M0 are 0 and iγ�jπ0j2, and its eigenvectors are jπ0i and

jρ0i ¼
�

−a�0s
a�0p cosðψÞ

�
;

the eigenvectors are perpendicular, i.e., hπ0jρ0i ¼ 0. If we
assume that the pump beam is linearly polarized and set
(without loss of generality) the phase of a0 to 0, the solution
for the evolution of ja1i then takes the simple form

ja1ðLÞi ¼ Rð−θ0Þ
�
eiγ

�jπ0j2k0L 0

0 1

�
Rðθ0Þja1ð0Þi; ð5Þ

FIG. 1 (color). Interaction geometry between two laser beams (a “pump” and a “probe”with electric fields a0 and a1, respectively) in a
plasma. (a) The beams cross at an angle ψ , forming a plasma grating via the ponderomotive force of the beat wave. (b) π0 is the
projection of a0 in the plane of polarization of the probe beam. In the undepleted pump limit, the a1⊥ component of the probe
perpendicular to π0 is unaffected by the coupling whereas the parallel component a1∥ has its amplitude or phase (or both) modified,
depending on the phase velocity of the plasma grating (cf. Fig. 2).
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where θ0 is the angle between p1 and π0 [cf. Fig. 1(b)] and

Rðθ0Þ ¼
�

cosðθ0Þ sinðθ0Þ
− sinðθ0Þ cosðθ0Þ

�

is a rotation matrix by θ0 in the plane (p1, s1).
That expression makes the essential physics process of

the wave mixing a lot more transparent: essentially, it
shows that the interaction leaves the component a1⊥ of the
probe perpendicular to π0 [cf. Fig. 1(b)] unchanged but
multiplies the parallel component a1∥ by exp½iγ�jπ0j2k0L�.
Practically, since jπ0j2 ¼ ja0pj2cos2ðψÞ þ ja0sj2, the cou-
pling can be maximized by aligning the pump’s electric
field with the s direction, in which case π0 ¼ a0. Whether
the coupling affects the amplitude or phase of the probe
beam (or both) depends on the plasma response term K,
whose real and imaginary parts are plotted in Fig. 2.
Figure 2 was calculated for parameters typical of recent

ICF or HED experiments, i.e., an electron density of 10% of
critical (for a laser wavelength of 351 nm), an electron and
ion temperature of 3 and 1 keV, respectively, and a crossing
angle of 20 degrees in a helium plasma. The phase of a1∥ is
retarded with respect to a1⊥ for ReðKÞ > 0 (i.e., jvbj < cs,
where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZTe þ 3TiÞ=mi

p
is the plasma sound speed)

or accelerated for ReðKÞ < 0 (i.e., for jvbj > cs [23]), and
the amplitude of a1∥ exponentially grows for ImðKÞ > 0
(i.e., vb > 0) or decays for ImðKÞ < 0 (i.e., vb < 0).

We note two particularly interesting regimes for practical
applications. The first corresponds to nondegenerate wave
mixing with vb ¼ �cs, where the beat wave has its phase
velocity equal to the plasma sound speed and thus
resonantly drives an ion-acoustic wave. Practically, this
can be achieved by adjusting the frequency difference
between the beams, as is now routinely done on the NIF to
control energy transfer between laser beams entering ICF
targets [24]. In this case, the plasma dielectric response
ϵ ¼ 1þ χe þ χi vanishes, so the real part of K becomes 0,
whereas its imaginary part reaches a maximum for vb ¼ cs
(or minimum for vb ¼ −cs; cf. Fig. 2).
In this case, the phase of a1 remains constant, but its

amplitude varies [the electric field vector evolves along the
dashed line parallel to π0 in Fig. 1(b)]. This leads to a
rotation of the polarization of a1, from θ1ð0Þ to

θ1ðLÞ ¼ θ0 − atan½e−ImðγÞjπ0j2k0L tan ½θ0 − θ1ð0Þ��: ð6Þ

For strong amplification [ImðγÞjπ0j2k0L ≫ 1], we have
θ1ðLÞ≃ θ0, i.e., the probe “aligns itself with the pump,”
whereas for strong decay [−ImðγÞjπ0j2k0L ≫ 1], we get
θ1ðLÞ≃ θ0 − π=2, i.e., the parallel component a1∥
vanishes.
The case of a probe amplification (vb ¼ cs) can be very

efficient at rotating the polarization of the probe, albeit its
amplitude will be affected as well. For example, for a pump
linearly polarized along s with intensity 1015 W=cm2

and for the same plasma parameters used in Fig. 2, we
find that a probe originally polarized at θ1 ¼ 23° rotates by
45° over only 100 μm, though its power is also amplified
by a factor ∼6.
On the other hand, the case of strong probe decay with

vb ¼ −cs (ω1 ¼ ω0 þ kbcs) presents a straightforward
application as a “plasma polarizer” in the direction
perpendicular to π0, as is conceptually represented
in Fig. 3(a). The extinction ratio is then
exp½−2ImðγÞjπ0j2k0L�. For example, using again the
plasma conditions from Fig. 2 with an s polarized
1015 W=cm2 pump, an extinction ratio of 10−5 can be
achieved for an interaction length L≃ 300 μm.
The second regime of interest is when the wave-mixing

is degenerate (ω0 ¼ ω1). In this case, the beat wave is a
standing wave, and as is seen in Fig. 2, ImðKÞ ¼ 0, so
γ ∈ IR. This means that the amplitude of a1 will remain
unchanged (no energy transfer), but the phase of its a1∥
component will be retarded. This corresponds to a bire-
fringence of the “pumpþ plasma” system, and is consistent
with recent work on ultrashort laser pulses propagation in
gases by Wahlstrand et al. [25,26].
The axes perpendicular and parallel to jπ0i then, respec-

tively, become the “fast” and “slow” axes [cf. Fig. 1(b)],
with refraction indices

FIG. 2 (color). Plasma coupling coefficient K (defined in text)
as a function of the phase velocity of the grating vb normalized
to the plasma sound speed cs (lower x axis), or, equivalently, vs
the frequency shift between the two laser beams (upper x axis),
for the following parameters: Te ¼ 3 keV, Ti ¼ 1 keV, Z ¼ 2
(helium), n0 ¼ 0.1nc, and λ0 ¼ 351 nm. The phase of a1∥
[cf. Fig. 1(b)] is retarded if ReðKÞ > 0 [or accelerated if
ReðKÞ< 0], and its amplitude exponentially grows if ImðKÞ> 0
[or decays if ImðKÞ < 0].
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ηfast ¼ η0; ð7Þ

ηslow ¼ ηfast

�
1þ K

2
sin2ðψ=2Þjπ0j2

�
: ð8Þ

When ω0 ¼ ω1, the susceptibilities are simply
χα ¼ ðkbλDαÞ−2 for α ¼ e or i (electron or ion).
If χi=χe ¼ ZTe=Ti ≫ 1, K simplifies further to K≃
ðkbλDeÞ−2 ¼ ð1 − η20Þ=½4η20sin2ðψ=2ÞTe=ðmec2Þ�.
This can be readily applied to the design of a “plasma

wave plate,”which is schematically represented in Fig. 3(b).
From the expressions of the fast and slow refractive indices,
the criteria on the interaction lengthL to design a quarter- or
half-wave plate (“λ=4” or “λ=2”) is

L ¼ λ0
jπ0j2η0Ksin2ðψ=2Þ ×

�
1=2 ðλ=4Þ
1 ðλ=2Þ ; ð9Þ

≃ZTe≫Ti 4η0λ0
jπ0j2ð1 − η20Þ

Te

mec2
×

�
1=2 ðλ=4Þ
1 ðλ=2Þ : ð10Þ

For the same plasma parameters used in Fig. 2 and the
geometry from Fig. 3(b) (i.e., the pump is s polarized and the
probe is initially linearly polarized at 45° from the plane of
incidence), a pump intensity of 1015 W=cm2 requires an
interaction length of ∼0.5 and 1 mm to achieve a quarter-
and half-wave plate, respectively. For example, laser beams
on the “inner cones” of the NIF have intensities of
a few 1014 W=cm2 but overlap over several millimeters,
with initial linear polarizations rotated by 45° due to the
azimuthal beam arrangement; therefore, these results show
that, while propagating through ICF targets, the laser beams’
polarizations are expected to acquire significant ellipticity.
Note that one can easily show that in the same unde-

pleted pump regime, the formulae and the required inter-
action length remain the same for a counter-propagating
geometry, i.e., by substituting ψ for π − ψ.

Achieving a circular polarization would, in principle,
provide “polarization smoothing” of the probe laser beam,
similar to those used at large scale laser facilities such
as the NIF or the Omega laser at the Laboratory for Laser
Energetics [27–29].
It is also worth noting that the behavior of the plasma

grating is different for the degenerate vs nondegenerate
cases. One can show from Eqs. (3)–(4) that jδnj0 ¼
−fjδnjImðγÞ and ϕ0 ¼ fReðγÞ, where ϕ is the phase
of δn and f ¼ hπ1jπ1i − hπ0jπ0i is real. If ω0 ¼ ω1

[ImðγÞ ¼ 0], the amplitude of δn will be constant, but its
phase will evolve along z. On the other hand, if vb ¼ �cs
[ReðγÞ ¼ 0], the amplitude of δn will vary, but its phase will
stay constant and dephased from the beat wave’s intensity
pattern by π=2. These features are similar to what is observed
in photorefractive media, except that the π=2 grating vs beat
wave dephasing (allowing energy exchange between the
beams) occurs for degeneratewave mixing in photorefractive
crystals (vs nondegenerate in plasmas). For practical pur-
poses, manipulating the polarization using the laser-induced
plasma birefringence has the added advantage that as long as
the amplitude of δn is small enough to prevent nonlinear
effects (particle trapping, wave breaking, etc.), that ampli-
tude will remain constant and presumably under control over
thewhole interaction length. Thus, in our previous numerical
example of a 1 mm-long plasma half-wave plate (or 0.5 mm-
long quarter-wave plate) with a pump intensity of
1015 W=cm2 and a probe intensity of 1014 W=cm2, the
density perturbation level would remain very small,
jδnj=n0 ¼ 0.15%. It should also be noted that the exper-
imental implementation of these concepts might reveal
practical challenges due to the fact that the intensities
required for the pump are typically high enough to trigger
other laser-plasma mechanisms, such as collisional absorp-
tion, self-focusing, backscatter, etc.; assessing these secon-
dary mechanisms will depend on the specific application and
corresponding laser and plasma conditions.

FIG. 3 (color). Conceptual design for: (a) a laser-plasma polarizer and (b) a laser-plasma wave plate.

PRL 113, 205001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

205001-4



In conclusion, we have shown that optical wave mixing
in a plasma can allow a full control of the polarization state
of laser beams. A Jones matrix analysis, valid for arbitrary
crossing angles and initial polarization geometries, pro-
vides an intuitive physical picture of the effect of the wave
mixing on the polarizations. Degenerate wave mixing
(ω0 ¼ ω1) can be used to control the dephasing between
the probe components a1∥ and a1⊥ (parallel and per-
pendicular to the projection of the pump’s electric field
in the probe’s plane of polarization), which allows the
design of a laser-plasma wave plate. Nondegenerate wave
mixing with ω1 ¼ ω0 � kbcs can be used to control the
amplitude of a1∥, allowing polarization rotation and the
design of a laser-plasma polarizer. These systems constitute
the basic building blocks for many active or passive optical
systems such as ultrafast Pockel cells, etc. These results are
relevant for a large variety of pump-probe or multi-laser-
beam experiments and could lead to the development of
new plasma-based photonics devices for the control of laser
polarization at high intensity, with various possible appli-
cations such as dynamical polarization switching or optical
beam smoothing.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344.
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