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Atoms can spontaneously form spatially ordered structures in optical resonators when they are
transversally driven by lasers. This occurs when the laser intensity exceeds a threshold value and results
from the mechanical forces on the atoms associated with superradiant scattering into the cavity mode. We
treat the atomic motion semiclassically and show that, while the onset of spatial ordering depends on the
intracavity-photon number, the stationary momentum distribution is a Gaussian function whose width is
determined by the rate of photon losses. Above threshold, the dynamics is characterized by two time scales:
after a violent relaxation, the system slowly reaches the stationary state over time scales exceeding the
cavity lifetime by several orders of magnitude. In this transient regime the atomic momenta form non-
Gaussian metastable distributions, which emerge from the interplay between the long-range dispersive and
dissipative mechanical forces of light. We argue that the dynamics of self-organization of atoms in cavities
offers a test bed for studying the statistical mechanics of long-range interacting systems.
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Long-range interactions characterize the dynamics of
systems from microscopic to macroscopic scales, ranging
from nuclear to astrophysical distances [1]. In these systems
the individual components can interact with a long-range
potential that decays with the interparticle distance r slower
than r−d in d dimensions. This property leads, to mention
some, to ensemble inequivalence and to the existence of
quasistationary states, i.e., metastable states with nonthermal
distributions [1].
Cold atoms driven by laser light constitute a promising

laboratory realization of long-range interacting systems
[2–5]. Here, multiple scattering of photons by atoms gives
rise tomechanical forces that are infinitely long rangedwhen
the atoms couple to a single-mode high-finesse cavity [6]. In
the overdamped regime this long-ranged potential lies at the
origin of synchronization [7] and collective atomic recoil
lasing [8]. When the cavity mode is a standing wave and the
atoms are transversally pumped, as in the setup sketched in
Fig. 1, spontaneous ordering in spatially periodic structures
occurs [3,9–11]. The phenomenon can be described in terms
of formation of atomic gratings that maximize coherent
scattering of laser photons into the cavity mode. These
“Bragg gratings” are stably trapped by themechanical effects
of the light they scatter, provided that the laser compensates
the cavity losses so that the number of intracavity photons is
sufficiently large. This takes place when the strength of the
laser coupling exceeds a threshold value Ωc depending,
amongst others, on the rate of photon losses and the number
of atoms N that couple with the cavity mode [12,13]. This
spatial self-organization was first predicted in Refs. [4,9] and
then reported in a series of experiments at laser-cooling
temperatures [10,14] and in the ultracold regime [11,15].
In this Letter we theoretically analyze the dynamics

leading to the formation of spatial structures and their

stationary properties in one dimension. For this purpose we
resort to a Fokker-Planck equation (FPE) derived when the
atoms are classically polarizable particles; their center-of-
mass motion is treated semiclassically, while the cavity
field is a full quantum variable [16]. This semiclassical
limit can be applied when the cavity linewidth κ (which
determines the scattering cross section) exceeds the recoil
energy ωr ¼ ℏk2=ð2mÞ, scaling the exchange of mechani-
cal energy between an atom of mass m and a photon of
wave number k. Our approach complements the one
applied in Refs. [9,12,13,17], based on the assumption
that the cavity field is a semiclassical variable. By treating
the cavity field quantum mechanically, we determine its
state for any value of the laser amplitude and, in particular,
at threshold, where quantum fluctuations are important.
This information is extracted provided that retardation

FIG. 1 (color online). Atoms in a standing-wave cavity and
driven by a transverse laser can spontaneously form ordered
patterns when the laser intensity Ω exceeds the rate of photon
losses, here due to cavity decay at rate κ. In this regime the atoms
experience a long-range interaction mediated by the cavity
photons and their motion becomes strongly correlated.
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effects in the scattering processes are perturbations, such
that at leading order the field is determined by the
instantaneous atomic distribution [18]. Thus, for N iden-
tical atoms confined in one dimension along the cavity axis,
the total scattering amplitude depends on their positions
x1;…; xN within the cavity standing wave cosðkxÞ and the
cavity electric field at time t is EcðtÞ ∝

ffiffiffiffiffiffiffi

Nn̄
p hΘit. Here, n̄

is the maximum intracavity-photon number per atom, and
is thus controlled by the strength of the external laser pump
[19], while the order parameter

Θ ¼
X

N

j¼1

cosðkxjÞ=N

characterizes spatial ordering in the cavity [12]. The field
reaches its maximum when jΘj ¼ 1, namely, when the
atoms form a Bragg grating. The corrections to Ec due to
the atomic motion are systematically included in the
following as perturbation, assuming that the Doppler shifts
of the atoms are smaller than the cavity linewidth κ [16].
The averages h·it are taken over the normalized distri-

bution fðx1; p1;…; xN; pN ; tÞ at time t, where p1;…; pN
are the atomic momenta and f obeys the FPE [16]

∂tf þ ff;Hg

≃ −n̄Γ
X

i

sinðkxiÞ∂pi

1

N

X

j

sinðkxjÞ
�

pj þ
m
β
∂pj

�

f:

ð1Þ

Here, the left-hand side (LHS) contains the Poisson
brackets with the Hamiltonian H governing the coherent
dynamics, that originate from the conservative mechanical
forces of light. The right-hand side (RHS) contains the
friction coefficient due to retardation and the diffusion,
due to fluctuations of the cavity field because of photon
losses [20]: These terms are scaled by n̄ and by the rate
Γ ¼ 8ωrκΔc=ðΔ2

c þ κ2Þ, with Δc ¼ ωL − ωc the detuning
between laser and cavity-mode frequencies, such that n̄Γ is
the maximum damping rate of a single atom (N ¼ 1). In
addition, ℏβ ¼ −4Δc=ðΔ2

c þ κ2Þ. The Hamiltonian

H ¼
X

j

p2
j

2m
þ ℏΔcn̄NΘ2 þOðUÞ ð2Þ

contains the cavity-mediated potential, which scales with n̄
and is attractive when Δc is negative. Hence, this detuning
determines whether the formation of Bragg gratings is
energetically favored. Equation (2) summarizes in a com-
pact way a property that was observed in several previous
works [9,10,12]. It is reported at leading order in jNU=Δcj,
where U is the dynamical Stark shift due to the coupling
with the cavity field [19], and whose effect is systematically
included in the numerical simulations.

Remarkably, at leading order in jNU=Δcj, Eq. (2) allows
one to draw a direct connection with the Hamiltonian Mean
Field (HMF)model, theworkhorse of the statisticalmechan-
ics of systems with long-range interaction, which in a
canonical ensemble exhibits a second-order phase transition
from a paramagnetic to a ferromagnetic phase controlled by
the temperature [1]. This analogy becomes explicit, writing
Θ2¼P

i;jfcos½kðxiþxjÞ�þ cos½kðxi−xjÞ�g=ð2N2Þ, which
shows thatH is extensive as it satisfies the Kac prescription
[1], and suggests to identify Θ with the x component of a
two-dimensional magnetization.
Differing from the HMF model, the term cos½kðxi þ xjÞ�

originates from the underlying cavity standing-wave
potential that breaks continuous translational invariance.
Moreover, the cavity coupling at higher order in jNU=Δcj
gives rise to deviations from the Hamiltonian dynamics due
to further terms in the LHS of Eq. (1) (see, e.g., [21]) which
are responsible for bistable behavior [22]. Retardation
effects and cavity losses, in addition, can establish long-
range correlations between the atoms, as visible by inspect-
ing the RHS. In fact, diffusion is here due to global
quenches of the cavity potential. Similarly, retardation
effects modify the cavity potential [23]. When the density
is uniform, the terms in the RHS reduce to the Langevin
terms of a FPE, which fulfills detailed balance and the
model is analogous to the Brownian mean field model [24].
However, this is valid at all times only well below the self-
organization threshold. Indeed, the stationary density is
here controlled by n̄, and thus by the laser intensity,
which scales both the strength of the long-range coherent
and incoherent forces. This becomes evident when
studying the dynamics at the asymptotics: A solution of
∂tf∞ ¼ 0 is the thermal distribution f∞ ¼ f0 expð−βHÞ
for Δc < 0, with f0 normalizing factor. The temperature is
independent of the laser intensity and its minimum
kBTmin ¼ ℏκ=2 is achieved for Δc ¼ −κ, as also found
in Refs. [12,13,25] using different approaches. In [13] the
self-organization threshold n̄c ¼ ð1þ κ2=Δ2

cÞ=4 was esti-
mated by means of a kinetic theory based on treating the
cavity field semiclassically. This value is consistent with
our results.
We first discuss the predictions of Eq. (1) at the

asymptotics. Figure 2(a) displays the stationary distribution
of the magnetization, PðΘ0Þ ¼ hδðΘ0 − ΘÞi∞, for different
values of n̄. For n̄ < n̄c, PðΘ0Þ is approximately a Gaussian
centered at zero. At threshold it broadens and becomes
increasingly localized at the values �1 as n̄ grows. The
width of this distribution is determined by the fluctuations
of the trajectories ΘðtÞ: the larger n̄ is, the more localized
are the atoms at a Bragg grating, while the probability of a
jump between gratings vanishes accordingly. Typical
trajectories ΘðtÞ at the asymptotics of the dynamics are
shown in Fig. 2(b): They are obtained by integrating the
stochastic differential equations (SDE) derived from Eq. (1)
[16]. While below threshold ΘðtÞ fluctuates about zero
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(corresponding to a uniform spatial distribution), as n̄ is
increased above threshold it takes either positive or
negative values, in which it remains trapped for time
intervals which grow with n̄. Jumps between the two
values correspond to quenches of the intracavity-photon
number following losses, as shown in (c) for n̄ ¼ 1.1n̄c,
and take place over time intervals approximately scaling
with the recoil frequency. Note that these jumps correspond
to a simultaneous jump of all atomic trajectories out of the
Bragg gratings [9,12]. For n̄ ¼ 4n̄c the residence time is
infinite: photon losses give rise to small fluctuations of the
potential depth and the atoms remain locked in a Bragg
grating. These features determine the light amplitude at the
cavity output, the jumps correspond to jumps of the field
phase and can be measured by heterodyne detection
[10,26]. Additional information is contained in the power
spectrum of the light intensity, which is the Fourier
transform SðωÞ of the correlation function gð1ÞðτÞ ¼
limt→∞hΘðτ þ tÞΘðtÞi=hjΘðtÞji2 and is displayed in
Fig. 2(d) for different values of n̄. SðωÞ exhibits a narrow
peak at the laser frequency as the threshold is approached,
and is associated with the creation of Bragg gratings
coherently scattering light into the resonator. The broad
background spectrum is progressively suppressed, corre-
sponding to a suppression of fluctuations of the order
parameter as the atoms become localized in Bragg
gratings. Moreover, at threshold two broad sidebands
appear whose maximum moves away from ω ¼ ωL as n̄
increases from n̄c. A qualitative analysis shows that the
sidebands width decreases as n̄ is increased from n̄c.
Similar features have been observed in the ultracold
[15,26,27] and have been interpreted in terms of density
waves that drive the instability. Figure 2(e) displays the
second-order correlation function of the emitted light at

zero-time delay gð2Þð0Þ as a function of n̄, where
gð2ÞðτÞ ¼ limt→∞hΘðτ þ tÞ2ΘðtÞ2i=hΘðtÞ2i2. Below thres-
hold gð2Þð0Þ → 3. This value is also found analytically after
discarding correlations between the atoms. It monotoni-
cally decreases with n̄ and reaches unity above threshold,
gð2Þð0Þ → 1, corresponding to a coherent state inside the
resonator [28]. The crossover between these two regimes
narrows as the number of atoms is increased, suggesting a
jump at n̄c in the thermodynamic limit (here consisting of
keeping n̄c constant as N → ∞ [12,21]).
These features are consistent with the conjecture that

self-organization is a second-order phase transition con-
trolled by n̄. This is also supported by the behavior of the
susceptibility χ ¼ hΘðtÞ2i − hjΘðtÞji2 as a function of n̄,
which suggests a divergence at n̄c for N → ∞. We remark
that the typical understanding of spatial domain formation
at a second-order phase transition is here meaningless
due to the nonadditivity of the energy: mesoscopic
Bragg gratings with Θ ¼ �1 cannot stably coexist in
space, since the resulting cavity field vanishes and with
it the interatomic potential.
We now turn to the dynamics leading to self-organization.

We assume that the initial distribution is spatially
uniform, while the momentum distribution is Gaussian
with 1=β ¼ ℏκ=2. For Δc ¼ −κ, at n̄ ≪ n̄c this distribution
is stationary [16]. At t ¼ 0 the transverse field is quenched
to a value corresponding to n̄ above threshold. Figure 3
displays a sample of 500 trajectories of ΘðtÞ as a function
of time when n̄ ¼ 4n̄c and N ¼ 200. The trajectories are
bunched and their behavior can be ordered into three
regimes, characterized by different time scales. First, a
fast relaxation occurs over the time scale of dozens cavity
lifetimes τc ¼ 1=κ, in which the magnetization reaches an
intermediate value of about 0.6 [Fig. 3(b)], where it remains

FIG. 2 (color online). (a) Distribution PðΘÞ of the magnetization Θ at steady state for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1, 4 (see box for color
code). (b) Typical trajectories at the asymptotics for N ¼ 200 atoms are shown in (b) as a function of time (in units of 1=κ) and for
n̄=n̄c ¼ 0.1, 1, 1.1, 4. Note that the cavity field amplitude is proportional toΘ. (c) Mean intracavity-photon number as a function of time
for the trajectory at n̄ ¼ 1.1n̄c. (d) Spectrum SðωÞ of the intensity of the emitted light (in arbitrary units) as a function of ω (in units of κ)
for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1 (from top to bottom). (e) gð2Þð0Þ as a function of n̄ for different atom numbers. The dots correspond to
numerical results obtained by integrating the SDE. The cavity parameters are rescaled with N so that n̄c is independent on N and finite
(see [21]). The atomic transition is theD2 line of 85Rb at half linewidth γ ¼ 2π × 3 MHz. The laser detuning from the atomic frequency
is Δa ¼ −500γ. Here, Δc ¼ −κ with κ ¼ 0.5γ.
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for a time scale exceeding τc by 4 orders of magnitude.
During the relaxation the spatial density is almost uniform,
therefore cross-correlations due to noise and mechanical
forces are almost negligible. After this relaxation, part of the
atoms form a Bragg grating [Fig. 3(c)] while the momentum
distribution is non-Gaussian [Fig. 3(d)]. We denote this
regime by prethermalization. Then, the magnetization
slowly grows to the stationary value over time scales which
are 6 orders of magnitude of the cavity lifetime.
Remarkably, for times of the order of t ∼ 105τc the
momentum distribution exhibits clear deviations from a
Gaussian, and, hence, from a thermal state, even though the
spatial distribution is very close to the asymptotic one. This
behavior can be understood considering that the diffusion is
a function of the spatial distribution: As visible in the RHS
of Eq. (1), the strength of noise (and thus the relaxation rate)
decreases the more the atoms are localized in the Bragg
gratings, and thus at the nodes of the sinðkxÞ function. In the
prethermalization time scale we verified that spatial diffu-
sion follows a power law according to hxðtÞ2i ∝ t2α, where
α is monotonically decreasing as n̄ increases. In particular, it
is superdiffusive (α > 1=2) below n̄c, while above n̄c it
becomes increasingly subdiffusive. In this latter case, in the
long tails of relaxation it becomes normal again, α → 1=2.
Figure 3(e) displays gð2ÞðτÞ for different values of n̄. Below
threshold it rapidly decays from 3 to unity on a time scale of
the order of cavity decay; at threshold its relaxation is orders
of magnitude slower and exhibits damped oscillations,
which can be associated with the density waves that become
unstable and determine the Bragg grating [cf. Fig. 2(d)].
Well above threshold, instead, it remains locked to unity,
corresponding to coherent light.
The prethermalization behavior, followed by the slow

rate at which the steady state is approached, is typical above
the self-organization threshold. We argue that it is a
manifestation of the long-range correlations mediated by

the cavity photons, and is analogous to observations made in
studies of nonequilibrium stochastic long-range-interacting
systems [29]. We further note that similar prethermalization
features have been observed in quantum spin models with
spatially correlated noise [30]. Differing from these latter
models, here the stationary state exhibits long-range spatial
correlations. On the other hand, we do not find signatures of
quasistationary states, whose relaxation times increase with
Nδ, with δ > 1 and whose existence is intrinsically related
to the long-range nature of the interaction [1]. We believe
this is due to the effect of the external environment,
consistently with studies showing that its action can make
these states dynamically unstable [31,32].
In this work we discarded the effect of spontaneous

decay, assuming it is negligible as the laser field is far off
resonance. Its role is expected to become more important as
n̄ is increased above threshold, and thus to enforce the
dynamical instability of quasistationary states. Our model
is also valid for any optically polarizable particles which
can be confined within the resonator [33]. It is also valid for
n̄ ≫ n̄c, when the atoms are tightly trapped in the poten-
tials, as long as the effective trap frequency ν of the
resulting lattice is smaller than the cavity linewidth [34].
The description breaks down for ν≃ κ, when quantum
mechanical coherence between the motional levels can be
observed [35,36].
In view of these results, one shall consider the self-

organization transition observed in the ultracold regime by
quenching the laser intensity [11] in terms of an intrinsi-
cally out-of-equilibrium phenomenon. Indeed, our results
predict that Hamiltonian solutions that possess the spatial
modulation of the Bragg gratings will experience very
small noise, even if they do not correspond with the
stationary state. This raises the need to develop a kinetic
theory for these systems as in Ref. [29]. Preliminary studies
in this direction have appeared in [13,25,37,38]. To

FIG. 3 (color online). Dynamics of the order parameter above threshold: (a)Θ as a function of time (in units of κ−1) forN ¼ 200 atoms
and 500 trajectories at n̄ ¼ 4n̄c and Δc ¼ −κ, for an initially spatially uniform distribution at temperature kBT ¼ ℏκ=2. PðΘÞ at the
transient and at the asymptotics is shown in panel (b). The position (c) and momentum (d) distributions are displayed at the times
indicated by (1), (2), and (3) in panel (a). The dashed lines correspond to the initial distributions [which overlaps to (1) in (c)].
(e) Intensity-intensity correlations of the light at the cavity output, gð2ÞðτÞ as a function of τ (in units of κ−1) for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1, 4,
(same color code as in Fig. 2) evaluated after the system has reached the stationary state.
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conclude, our study shows that photonic systems offer
a promising platform to study the statistical mechanics
of long-range interacting systems, thus gaining insight
into the dynamical properties of non-neutral plasmas and
self-gravitating clusters [1].
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