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We present an exact solution of the relativistic Boltzmann equation for a system undergoing boost-
invariant longitudinal and azimuthally symmetric transverse flow (“Gubser flow”). The resulting exact
nonequilibrium dynamics is compared to first and second order relativistic hydrodynamic approximations
for various shear viscosity to entropy density ratios. This novel solution can be used to test the validity and
accuracy of different hydrodynamic approximations in conditions similar to those generated in relativistic
heavy-ion collisions.
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Introduction.—Relativistic hydrodynamics plays an
important role in the description of the space-time evolution
of the quark-gluon plasma (QGP) formed in ultrarelativistic
heavy-ion collisions (for a recent review, see [1]). While the
ideal limit of the relativistic hydrodynamic equations has
been known for a long time [2], the same cannot be stated
for relativistic viscous hydrodynamics. The most wide-
spread relativistic formulation of viscous hydrodynamics,
relativistic Navier-Stokes theory [2], is acausal and intrinsi-
cally unstable [3]. Its causal generalization remains under
intense investigation [4–24].
For weakly interacting dilute relativistic gases, the differ-

ent approximation schemes that have been used to derive
viscous fluid dynamics from first principles can be inves-
tigated using the Boltzmann equation as the underlying
microscopic theory. To determine which type of hydro-
dynamic approximation best describes a rapidly expanding
QGP, it is useful to consider exactly solvable kinetic models
where the approach to thermalization and subsequent
hydrodynamic behavior can be studied directly without
further approximation. Even though the strongly coupled
QGP does not admit a microscopic description via the
Boltzmann equation, the macroscopic hydrodynamic
description remains valid in the strong-coupling regime as
long as the Knudsen number (i.e., the ratio of mean free path
to macroscopic system size) remains small. Hydrodynamic
approximations that accurately describe some exactly known
microscopic Boltzmann dynamics at weak coupling can
therefore be assumed to also provide the most accurate
macroscopic description for a strongly coupled liquid.
The approach of testingmacroscopic hydrodynamic descrip-
tions against exact solutions of the Boltzmann equation has
been successfully applied to understand pressure isotropiza-
tion and thermalization in transversally homogeneous sys-
tems undergoing longitudinally boost-invariant expansion
[25], for both initially isotropic [26] and highly anisotropic

[27–29] local momentum distributions. So far, none of the
available exact relativistic solutions of the Boltzmann equa-
tion include, simultaneously, the effects of longitudinal and
transverse expansion.
Transverse expansion of the QGP is, however, the

underlying physical mechanism responsible for the collec-
tive flow signals observed in ultrarelativistic heavy-ion
collisions and used to probe the transport properties of this
novel state of nuclear matter. Therefore, to better assess the
accuracy of hydrodynamic approximations applied to QGP
dynamics, they must be tested under conditions involving
simultaneous transverse and longitudinal expansion. In this
Letter, we present the first exact solution of the relativistic
Boltzmann equation that satisfies this criterion. Our solution
is for an azimuthally symmetric radially expanding boost-
invariant conformal system that is undergoing Gubser flow
[30]. The nonequilibrium dynamics obtained from this exact
solution is compared to results obtained using the most
popular relativistic hydrodynamic approximations subject
to the same flow and symmetries. Specifically, we compare
to first order Navier-Stokes (NS) theory [30,31] and second
order Israel-Stewart (IS) theory [32]. A more detailed
derivation of our solution and comparisons to other second
order hydrodynamic approximation schemes can be found
in [33].
Exact (1þ 1)-dimensional kinetic solution.—The

dynamics of high-energy heavy-ion collisions is usually
described in Minkowski space-time using Milne coordi-
nates xμ ¼ ðτ; x; y; ςÞ, with longitudinal proper time τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and space-time rapidity ς ¼ tanh−1ðz=tÞ and

metric gμν ¼ ð−1; 1; 1; τ2Þ. In this Letter, the fluid velocity
uμ is taken to be the Gubser flow [30] which possesses a
conformal SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 symmetry (Gubser
symmetry [30,31]). Systems with such a flow profile are
more conveniently described in a curved space-time given
by the direct product of three-dimensional de Sitter space
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and a line, dS3 ⊗ R [34]. The two space-times are related
by a Weyl rescaling of the metric, dŝ2 ¼ ds2=τ2, with
ds2 ¼ −dτ2 þ dr2 þ r2dϕ2 þ τ2dς2 being the Minkowski
line element in polar Milne coordinates, and dŝ2 ¼ −dρ2 þ
cosh2 ρðdθ2 þ sin2 θdϕ2Þ þ dς2 being the line element in
dS3 ⊗ R. Here, we introduced the de Sitter coordinates
x̂μ ¼ ðρ; θ;ϕ; ςÞ, with [31]

ρðτ; rÞ ¼ −sinh−1
�
1 − q2τ2 þ q2r2

2qτ

�
;

θðτ; rÞ ¼ tan−1
�

2qr
1þ q2τ2 − q2r2

�
: ð1Þ

q−1 is an arbitrary length scale that sets the size of the
system. In these coordinates, the Gubser flow profile
uτ ¼ − cosh κðτ; rÞ, ur ¼ sinh κðτ; rÞ, with transverse flow
rapidity κ ¼ tan−1½2q2τr=ð1þ q2τ2 þ q2r2Þ� [30,31], sim-
plifies to ûμ ¼ ð−1; 0; 0; 0Þ [30,31]; i.e., the system
becomes macroscopically static. (All quantities in dS3⊗R
are denoted by a “hat”.)
We seek an exact solution of the Boltzmann equation

pμ∂μfðx; pÞ ¼ C½f�ðx; pÞ; ð2Þ
with a simplified [35] collision term in relaxation time
approximation (RTA) [36,37]

C½f�ðx; pÞ ¼ p · uðxÞ
τrelðxÞ

½fðx; pÞ − feqðx; pÞ�: ð3Þ

Here, feqðx; pÞ is the local equilibrium distribution
function, assumed to be of Boltzmann form feq ¼
expðp · u=TÞ, where TðxÞ is the local temperature, related
by conformal invariance to the relaxation time by τrelðxÞ ¼
c=TðxÞ. c is a free dimensionless parameter that, in RTA,
can be expressed in terms of the shear viscosity to entropy
density ratio η̄≡ η=s as c ¼ 5η̄ [12,15,27,28].
The Gubser symmetry severely restricts the possible

combinations of the coordinates x̂μ and momenta p̂μ

on which the distribution function fðx̂; p̂Þ can depend.
First, conformal invariance requires massless degrees
of freedom, i.e., p̂2 ¼ 0, so p̂ρ can be eliminated in
terms of the “spatial” momentum components: p̂ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂θ= cosh ρÞ2 þ ½p̂ϕ=ðcosh ρ sin θÞ�2 þ p̂2

ς

q
. Z2 symmetry

requires f to be an even function of ς. The SOð1; 1Þ
symmetry implements longitudinal boost invariance which
reduces the dependence on the longitu-dinal coordinates
and momenta to the combination p̂ς ¼ τpT sinhðy − ςÞ ¼
tpz − zE (where pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
is the transverse momen-

tum and y is the momentum rapidity). Symmetry under
the SOð3Þq subgroup implies that the distribution function
is independent of θ and ϕ ¼ tan−1ðy=xÞ, and that it
depends only on the following combination of momentum
components [33]:

p̂2
Ω ¼ p̂2

θ þ
p̂2
ϕ

sin2 θ
: ð4Þ

In other words, fðx̂;p̂Þ¼fðρ;p̂2
Ω;p̂ςÞ for Gubser-symmetric

systems.
Using these constraints, the RTA Boltzmann equation in

de Sitter coordinates reduces [33] to the following simple
relaxation-type equation:

∂
∂ρ fðρ; p̂

2
Ω; p̂ςÞ ¼ −

T̂ðρÞ
c

�
fðρ; p̂2

Ω; p̂ςÞ − feq

�
p̂ρ

T̂ðρÞ

��
:

ð5Þ

Here, p̂ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂Ω= cosh ρÞ2 þ p̂2

ς

q
and T̂ ¼ τT. As had

been shown in [31] for the hydrodynamic case, imposing
Gubser symmetry reduces the partial differential Eq. (2) to
a simple ordinary differential equation [38].
Equation (5) has the following exact solution [27,28]

fðρ;p̂2
Ω;p̂ςÞ¼Dðρ;ρ0Þf0ðρ0;p̂2

Ω;p̂ςÞ

þ1

c

Z
ρ

ρ0

dρ0Dðρ;ρ0ÞT̂ðρ0Þfeqðρ0;p̂2
Ω;p̂ςÞ; ð6Þ
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FIG. 1 (color online). The normalized temperature (top) and
shear stress π̄ςς ≡ π̂ςς=ðŝ T̂Þ (bottom) as a function of ρ in
dS3 ⊗ R, obtained from the exact kinetic solution, second order
(IS) and first order (NS) viscous hydrodynamics [all for
η̄ ¼ 1=ð4πÞ], ideal hydrodynamics (η̄ ¼ 0), and free streaming
(c ¼ 0 or η̄ ¼ ∞). In all cases, ρ0 ¼ 0 and ε̂ðρ0Þ ¼ 1.
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where Dðρ; ρ0Þ ¼ exp ½− R
ρ
ρ0
dρ0T̂ðρ0Þ=c� is the damping

function and f0ðρ0; p̂2
Ω; p̂ςÞ is the initial distribution func-

tion at ρ0. In the following, we assume that the initial
configuration corresponds to an equilibrated state; other
possible choices will be studied in future work.
All macroscopic hydrodynamic quantities can now

be computed from their kinetic definitions as momentum

moments of f. For example, the energy density is given by
ε̂ðρÞ ¼ R

dP̂ðp̂ρÞ2fðρ; p̂2
Ω; p̂ςÞ and the shear stress tensor

by π̂μν¼
R
dP̂Δ̂αβ

μν p̂αp̂βfðρ;p̂2
Ω;p̂ςÞ, with dP̂¼dp̂ςdp̂θdp̂ϕ=

½ð2πÞ3p̂ρcosh2ρsinθ�. Δ̂μν
αβ is the transverse and traceless

double projector in ðρ; θ;ϕ; ςÞ coordinates. By taking
momentum moments of Eq. (6), exact integral equations
similar to Eq. (6) can be written for ε̂ and π̂μν [33]. These
equations are solved numerically by the iterative procedure
described in Ref. [28]. The resulting energy density defines
the temperature and, hence, the equilibrium distribu-
tion function for ρ ∈ ð−∞;∞Þ. Once this is done, the full
nonequilibrium distribution function can also be deter-
mined from Eq. (6).
In this Letter, we compare the evolution of energy

density, temperature, and shear stress obtained from the
above exact kinetic solution to previously found solutions
corresponding to three different hydrodynamic approxima-
tions: ideal hydrodynamics (c ¼ 0), NS theory [30], and
conformal IS theory [32]. We also compare with the
analytic free streaming limit which can be obtained from
the kinetic theory solution [Eq. (5)] by setting c → ∞. The
ideal fluid solution is [30,31]

ε̂ðρÞ ¼ ε̂ðρ0Þ
ðcosh ρÞ8=3 ; π̂μνðρÞ ¼ 0: ð7Þ

Viscous hydrodynamics with Gubser flow is fully charac-
terized by a single shear stress component [32] for which
we will choose π̄ςς ≡ π̂ςς=ðŝ T̂Þ (where ŝ ¼ τ3s is the entropy
density in de Sitter space). The IS equation for the
temperature obtained from the conservation of energy-
momentum, ∇̂μT̂

μν ¼ 0, is
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FIG. 2 (color online). Same as Fig. 1, except for η̄ ¼ 10=ð4πÞ.
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FIG. 3 (color online). Snapshots of the radial profiles of the temperature (top) and the shear stress component π̄ςς (bottom) computed at
τ ¼ 1, 5, and 10 fm=c (with q ¼ 1 fm−1). The results shown correspond to the exact kinetic solution (solid black line), ideal
hydrodynamics (dot-dashed green line), and second order IS theory (red short-dashed line). In this figure, η̄ ¼ 1=ð4πÞ.

PRL 113, 202301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

202301-3



1

T̂

dT̂
dρ

þ 2

3
tanh ρ ¼ π̄ςς

3
tanh ρ; ð8Þ

while for the shear stress component one finds

dπ̄ςς
dρ

þ T̂
cη̄

π̄ςς þ 4

3

�
ðπ̄ςςÞ2 − 1

c

�
tanh ρ ¼ 0: ð9Þ

In Eq. (9), we use the same relaxation time as in Eq. (3),
namely, τrel ¼ 5η̄=T. The NS result of [30,31] corresponds
to the c → 0 limit of Eq. (9) which gives ðπ̄ςςÞNS ¼
ð4=3Þðη̄=T̂Þ tanh ρ.
The dS3 ⊗ R solutions for ε̂ and π̂μν can be translated

back to Minkowski space via the prescription [30–32]

εðτ; rÞ ¼ ε̂½ρðτ; rÞ�
τ4

;

πμνðτ; rÞ ¼
1

τ2
∂x̂α
∂xμ

∂x̂β
∂xν π̂αβ½ρðτ; rÞ�: ð10Þ

Numerical results.—In Figures 1 and 2, we show the de
Sitter time evolution of the normalized temperature
T̂=T̂ðρ0Þ (top panel) and shear stress π̄ςς (bottom panel),
with initial conditions ε̂ðρ0Þ ¼ 1 and π̄ςςðρ0Þ ¼ 0 at ρ0 ¼ 0,
for the exact kinetic solution, its free streaming limit, and
three different hydrodynamic approximations: ideal as well
as NS and IS viscous hydrodynamics. For small specific
shear viscosity η̄ ¼ 1=ð4πÞ, shown in Fig. 1, second order
IS viscous fluid dynamics provides the best description
for both quantities; for ten times larger shear viscosity
η̄ ¼ 10=ð4πÞ, shown in Fig. 2, the free-streaming limit
provides the best approximation to the exact solution, again
followed by second order IS theory as the best hydro-
dynamic approximation. The improvement resulting from
including second order corrections is particularly evident
for π̄ςς: first order NS theory exhibits qualitatively wrong
behavior for π̄ςς at negative ρ values.
Figure 3 shows snapshots of the radial temperature (top)

and shear stress (bottom) profiles in Minkowski space at

three longitudinal proper times, τ ¼ 1, 5, and 10 fm=c,
choosing q ¼ 1 fm−1 for the scale parameter. For
η̄ ¼ 1=ð4πÞ, the exact kinetic solution is compared with
ideal and second order viscous IS hydrodynamics. Once
again, second order IS theory is found to provide a good
description of the kinetic results. Onemay observe that at no
fixed value for the longitudinal proper time the different
approximations agree with each other perfectly. Although
they are equal at the initial de Sitter time ρ0, where we
assumed the system to be in local equilibrium, Eq. (1) shows
that surfaces of constant ρ translate into hyperbola-like
surfaces in the τ-r plane, and that at fixed τ, small (large) r
values correspond positive (negative) values of ρ − ρ0,
where the system is out of equilibrium. Even for η̄ as small
as1=ð4πÞ, ideal hydrodynamics is seen to fail badly at large r
values (i.e., at large negative ρ) whereas second order
hydrodynamics performs much better. This is consistent
with Figs. 1 and 2. The location in Fig. 3 of the peak value of
the temperature corresponds to ρ ¼ ρ0, and at this point, all
approximations agree by construction.
Finally, we present in Fig. 4, a 3D visualization of the

full space-time evolution of the exact kinetic theory result
for the shear stress π̂ςς ¼ τ4πςς, for 4πη̄ ¼ 1 and 10 in the left
and right panels, respectively. Clearly, the shear stress is
strongly affected by an increase of the shear viscosity by a
factor of 10. The location of the trough corresponding to
π̂ςς ¼ 0 indicates the initial condition surface ρ0 ¼ 0, and
the inner region bounded by it represents positive ρ values.
Conclusions.—We presented an analytic (1þ 1)-D sol-

ution of the RTA Boltzmann equation for a system with
Gubser flow. This is the first exact solution of the Boltzmann
equation for a relativistic system undergoing simultaneous
longitudinal and transverse expansion. It allows one to
compute all components of the energy-momentum tensor
and to study their full space-time evolution exactly. By
comparing these exact solutions with the most widespread
formulations of relativistic hydrodynamics, we were able to

FIG. 4 (color online). Two-dimensional slice showing, for scale parameter q ¼ 1 fm−1, the Minkowski space-time evolution at
y ¼ z ¼ 0 of the shear stress π̂ςς ¼ τ4πςς, for η̄ ¼ 1=ð4πÞ (left panel) and η̄ ¼ 10=ð4πÞ (right panel).

PRL 113, 202301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 NOVEMBER 2014

202301-4



determine their regime of validity at each space-time point
for varying values of the specific shear viscosity η̄.We found
that, quite generally, second order viscous hydrodynamics
provides an overall good description of the exact kinetic
results and performs much better than relativistic Navier-
Stokes theory. The exact solution obtained here opens novel
ways to test the accuracy of different hydrodynamic
approaches used to describe the dynamics of the QGP
formed in ultrarelativistic heavy-ion collisions. Future
analysis of the solution [Eq. (6)] in momentum space with
nonequilibrium initial conditions promises to offer detailed
insights into the dynamics of longitudinal or transverse
momentum isotropization and thermalization in relativistic
systems undergoing simultaneously transverse and longi-
tudinal expansion.
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