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We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier
thermoelectric effect and energy filtering.The system tobe cooled is connected to another harmonically trapped
gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively
cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi
level of the system, in order to fill the “holes” in the energy distribution. This is achieved by a suitable energy
dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be
viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower
entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.
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Introduction.—The Peltier effect is a reversible thermo-
electric phenomenon, in which heat is absorbed or pro-
duced at the junction of two materials forming a circuit in
which a current is circulated [1]. Peltier cooling modules
based on this effect are used for a variety of applications
ranging from wine coolers to the cooling of electronic
devices. The basic principle of a Peltier module is sche-
matized in Fig. 1(c). It consists of two materials with
Seebeck coefficients of opposite signs (p-type and n-type)
arranged as indicated. A heat (entropy) current flows in
both materials from the cold side to the hot side.
Microscopically, this heat current corresponds to a flow
of energetic electrons in the n branch: hot electrons above
Fermi level are “evaporated” out of the cold plate.
Similarly, a hole current flows in the same direction in
the p branch, so that holes below Fermi level are being
filled. Both processes lead to a rectification of the energy
distribution of electrons in the cold plate [Fig. 1(b)] and,
hence, to a decrease of its entropy.
In the context of mesoscopic electronic systems, thermo-

electric effects aswell as thermal properties and refrigeration
have recently been the focus of renewed interest [2–4]. The
cooling of low-dimensional nanostructures has been pro-
posed [5–7] and experimentally realized [4,8,9], for exam-
ple, by engineering a proper energy dependence of the
transmission coefficients using quantum dots.
In the field of cold atomic Fermi gases, reaching lower

temperatures is currently one of the most urgent challenges.
Typically, the cooling of these gases is achieved using laser
cooling followed by evaporative cooling [10,11]. Quantum
degeneracy and very low absolute temperatures of the order

a few hundred nano-Kelvin are typically reached with these
techniques, leading to the observation of many remarkable
phenomena such as the BCS-BEC crossover [12]. However,
the entropy per particle, which is the relevant quantity in
these well isolated fermionic gases, is still too large
(T=TF ≈ 0.1) [13] to investigatemany of themost intriguing
quantum effects such as the Kondo effect [14,15], p-wave
superfluidity [16–18], which shows a nontrivial topological
feature [19] as the quantum Hall effect [20], low-
temperature transport [21], spin liquids [22], or even
antiferromagnetic order in the Hubbard model [23,24] [25].
Here, we propose an efficient cooling scheme for atomic

Fermi gases which uses the Peltier effect in synergy with
evaporative cooling. Our proposed setup is based on thermo-
electric effects [26–35] and is displayed in Fig. 1(a). Two
clouds of fermions, a reservoir R and a system S to be
cooled, are prepared in harmonic traps. The initial Fermi
energies of the two gases areE0

F;RðSÞ ¼ hν̄ð3NRðSÞÞ1=3, with ν̄
the average trapping frequency [36] and NR, NS the atom
numbers (NR > NS). The lowest energy level of the reservoir
is offset by Δε ≥ 0 as compared to that of the system. Two
processes are implemented in order to lower the entropy of
the system. The first one is evaporative cooling at a rate
ΓevðεÞ applied to particles with energy higher than a thresh-
old ε1, chosen above the Fermi level E0

FS. The second
simultaneous process is the injection of fermions from the
reservoir into the system below the system’s Fermi level
which can be viewed as an “evaporation” of holes.
This is achieved by connecting the traps by a constriction

[37,38] characterized by an energy-dependent transmission
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T ðεÞ. In an ideal setup, the transmission is chosen to have a
boxlike dependence on energy: any state with energy above
Δε and below a threshold ε0 located just below the Fermi
level of the system is perfectly transmitted [Fig. 1(a)].
The combination of these two processes, the evaporative

cooling and the injection of fermions below the Fermi
surface, induces an efficient cooling. This can be seen from
the time evolution of the energy distribution displayed in
Fig. 1(b). Starting initially from a broad hot distribution, it
evolves towards a rectified distribution with a sharp drop at
the Fermi level, characteristic of a low temperature. The
parameters of the cooling process can be chosen, such that
the atom number in the system changes only slightly, since
the atom losses from evaporative cooling can be compen-
sated by the injection of the reservoir atoms. At the same
time, the reservoir is heated and looses atoms. However, the
bottom of the energy distribution of the reservoir remains
filled [Fig. 1(b)], ensuring an efficient injection of cool
particles. The cooling process stops when the system
energy distribution becomes equal to the reservoir distri-
bution in the transmission window. We show below that
both the final entropy per atom and the cooling rate are
improved in comparison to evaporative cooling only, by
approximately a factor of 4.

Model of the cooling process.—We describe the process
in terms of coupled rate equations for the distribution
functions fS and fR. We assume that thermalization in the
system and in the reservoir is fast, so that they can be
considered to be in thermodynamic equilibrium. Under this
assumption, the particle current leaving the reservoir is
given by the Landauer formula

IN ¼ 1

h

Z
dεT ðεÞ½fRðεÞ − fSðεÞ�

¼ −
Z

dεgRðεÞ
dfR
dt

ðεÞ ¼
Z

dεgSðεÞ
dfS
dt

ðεÞ:

In this expression, gRðεÞ ¼ ðε − ΔεÞ2=ððhνÞ3Þϑðϵ − ΔεÞ
and gSðεÞ ¼ ε2=ððhνÞ3ÞϑðεÞ are the density of states in
the reservoir and in the system, with ϑ the Heaviside
function. The coupled evolution of the two distribution
functions is, thus, given by

gRðεÞ
dfRðεÞ
dt

¼ −
T ðεÞ
h

½fR − fS�ðεÞ; ð1Þ

gSðεÞ
dfSðεÞ
dt

¼T ðεÞ
h

½fR−fS�ðεÞ−ΓevðεÞgSðεÞfSðεÞ: ð2Þ

In the second equation, the effect of evaporation has been
included as a leak of high energy particles above a fixed
energy threshold ε1, with an energy independent rate
ΓevðεÞ¼ γevϑðε− ε1Þ [10]. Note that this differs from the
usual definition of the evaporation rate as the rate of losses
reducing the total particle number. Since T ðεÞ is dimen-
sionless, the typical time scale that rules the time evolution
in these equations is τ0 ¼ hgSðE0

FSÞ ¼ hðE0
FSÞ2=ððhνÞ3Þ.

This is the compressibility divided by the “conductance”
quantum, which has been identified as the time scale for the
particle transport in previous experiments [26,37].
In principle the scattering of the atoms has to be taken into

account in the evolution equations. However, since we
assume the scattering to be the fastest time scale in the
problem, we take it into account as an instantaneous
rethermalization. This assumption is justified by a compari-
son of relevant time scales. A typical thermalization time
found in experiments is around 100 ms (computed with the
estimates given, e.g., in [39]). In contrast, the values for the
transport times τ0 are of the order of ten seconds (i.e., for
100Hz average trapping frequency andEF ¼ 500 nK in the
reservoirs). Thus, the thermalization time is a small fraction
of the transport time scales which ensures that the typical
evolution by the transport is significantly slower than
thermalization in the reservoirs, a regime which has already
been observed experimentally [37,40].
The evolution of the system is implemented by time

evolving Eqs. (1) and (2) for a time step δt ¼ 0.1τ0 which is
small compared to the transport time and large compared to
the thermalization time. The particle numbers NS;Rðtþ δtÞ
and energies ES;Rðtþ δtÞ are computed and used to obtain
the new values of the chemical potentials μS;R and temper-
atures TS;R assuming thermodynamic equilibrium for a

FIG. 1 (color online). (a) Sketch of the proposed Peltier cooling
scheme: atoms are injected from deep energy levels of the reservoir
cloud (R) into the system cloud (S) just below the Fermi level
through a channel with an energy-dependent transmission T ðεÞ.
Additionally, the system is submitted to evaporative cooling with a
fixed evaporation threshold ε1 above Fermi level, removing hot
particles. (b) Evolution of the Fermi distribution of the system at
three stages during the cooling process: initial (dashed blue curve,
TS ≈ TFS), intermediate (dotted blue curve, TS ¼ 0.3TFS), and
final (solid blue curve, TS ¼ 0.02TFS). The evolution, indicated
by arrows, is calculated (see text) for ε1 ¼ 1.05E0

FS, γevτ0 ¼ 15,
ε0 ¼ 0.99E0

FS, Δε ¼ 0.96E0
FS, and E

0
FS ¼ 0.25E0

FR. The blue and
grey shaded regions indicate the injection and evaporation energy
windows, respectively. The dashed-dotted curve is the final
distribution of the reservoir. (c) Sketch of a Peltier coolingmodule.
The n-like and p-like thermoelectric materials ensure the transport
of low energy (electrons) and high energy (holes) particles, which,
thus, carry heat from the cold (blue) to the hot (red) region.
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noninteracting gas. The resulting equilibrium Fermi func-
tions fSðtþ δt; εÞ and fRðtþ δt; εÞ are subsequently
evolved using the rate equations, and the entire procedure
is repeated. This description of cooling is in line with the
pulsed approach of evaporation developed, for example, in
Refs. [10,41]. The time step δt is chosen small enough,
such that it does not affect the resulting evolution.
Unless specified, a transmission of the form T ðεÞ ¼

ϑðϵ0 − εÞ will be considered. This means that only states in
the energy window ε ∈ ½Δε; ε0� can be transmitted (“box-
like” transmission). As was recently pointed out for
electronic mesoscopic systems [7], and further discussed
in the last section, this transmission is the optimal choice to
achieve the best cooling performances. To summarize, the
scheme involves three characteristic energy thresholds:
Δε ≤ ε0 ≤ ε1, corresponding, respectively, to the energy
offset between R and S, the maximum injection energy into
S, and the minimum evaporation energy out of S.
Results and comparison to evaporative cooling.—In the

following, we demonstrate the potential of the proposed
Peltier cooling scheme by comparing it to commonly used
evaporative cooling. We focus on the reachable entropy per
particle and on the cooling rate. The entropy per particle s
in a trapped noninteracting Fermi gas is related to the ratio
T=TF by s ¼ ðπ2kB=2ÞðT=TFÞ at low temperature, so that
we use equivalently s or T=TF below. The evolution of the
entropy per particle is shown in Fig. 2(a). Assuming that the
two gases are first prepared from a single cloud by
evaporative cooling, we used a typically reached entropy
per particle of T=TF ¼ 0.25 as an initial value (with TF the
Fermi temperature of the total cloud). Initially, the ratio of
the atom numbers between the system and the reservoir is
chosen such that E0

FS=E
0
FR ¼ NS=NR ¼ 0.25, which leads

to the initial entropy per atom of TS=TFS ≃ 1.07 and
TR=TFR ≃ 0.27. For the results in Fig. 2, we have chosen
the evaporation threshold ε1 ¼ 1.05E0

FS, the maximal
transmission energy ε0 ¼ 0.99E0

FS, i.e., close to the target
Fermi energy (which is the initial one) and the chemical
potential bias Δε ¼ 0.96E0

FS. The rate γev is chosen to be
γevτ0 ¼ 15. Figure 2 shows that a very efficient reduction of
the entropy per particle to a value of approximately
TS=TFS ≈ 0.02 is achieved within a short time scale. At
longer times, a slight rise in the entropy per particle sets in.
The number of particles in the system initially has a very
fast decay due to the dominating evaporation. However, the
injection of electrons compensates this decrease at inter-
mediate times, and an almost constant atom number close
to the initial one is reached at long times.
In experimental setups, various heating mechanisms

such as spontaneous emission [42], as well as particle
losses, can drastically limit the lowest entropy that can be
reached. The cooling process will stop being efficient when
the cooling rate becomes comparable to the heating or
emission rate, and therefore, it is important to compare
these two rates. To this purpose, we define the cooling rate
η as the time derivative of the entropy per particle:

ηðtÞ ¼ −ðdsSðtÞ=dtÞ, and display it in Fig. 3 versus the
corresponding value of TSðtÞ=TFSðtÞ. The horizontal line
stands for a typical value of the experimental heating rate.
From this plot, one can directly read off the entropy per
particle which can be reached (here about 0.015TS=TFS) in
the presence of this heating rate.
To assess the usefulness of our cooling scheme, we

compare it to evaporative cooling applied to the total initial
cloud with N ¼ NR þ NS with the same initial temperature,
here T=TF ¼ 0.25, and the same evaporation threshold
relative to the Fermi energy ε1 ¼ 1.05E0

F, where E0
F is the

initial Fermi energy of the total cloud. Since, for the
evaporative cooling, no separation of the total cloud in two
subclouds is performed, we use the index S to label the
quantities of the entire cloud.We see, fromFig. 2, that at short
times, the entropy reached by the proposed cooling scheme is
much lower than the one reached by evaporative cooling. So,
if one aimsat reachinga given lowvalue ofT=TF, this value is
reached faster with the proposed scheme. At the same time,
one sees that the particle number during the evaporative
cooling is reducing drastically to about 40%of its initial value
[44]. At infinite times, the evaporative cooling would empty
the reservoir and, during this process, reach lower and lower
entropy per particles. Nevertheless, as cooling takes place,
evaporation is less and less efficient, and the cooling rate of
evaporation slows down considerably: as seen in Fig. 3, the
cooling rate for the Peltier scheme is much larger than for the
evaporative scheme, at a given entropy per particle.
Because of this faster cooling rate, the temperatures

which can be reached in the presence of heating or
spontaneous emission are much deeper in the degenerate

FIG. 2 (color online). Evolution during the cooling process of
(a) the entropy per particle TSðtÞ=TFSðtÞ and (b) the Fermi energy
EFSðtÞ (left axis) and particle numberNSðtÞ (right axis). The solid
curves are for the Peltier cooling with E0

FS=E
0
FR ¼ 1=4 and ε1 ¼

1.05E0
FS, γevτ0 ¼ 15, ε0 ¼ 0.99E0

FS, Δε ¼ 0.96E0
FS. The dashed-

dotted curves are for evaporative cooling only, with an initial
particle number N¼NSþNR and ε1 ¼ 1.05EF. Inset: minimum
entropy per particle achieved by Peltier cooling, as a function of
ε0, for: ε1¼1.05E0

FS and ðϵ0−ΔεÞ=E0
FS¼3% (red triangles), 20%

(purple circles), and ε1¼1.5E0
FS, ðϵ0−ΔεÞ=E0

FS¼3% (blue squares).
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regime when using the Peltier cooling. As seen in Fig. 3, for
the chosen heating rate, an entropy per particle of order
0.015TS=TFS is reached using the Peltier scheme, in
contrast to 0.10TS=TFS using evaporative cooling only.
The inset of Fig. 2(a) illustrates how the minimum of the

entropy per particle depends on the parameters of the setup.
The injection energy window ε0 − Δε should be relatively
narrow to obtain a low entropy, but broad enough to allow for
a fast cooling. Having, in addition, an evaporation threshold
as close as possible to the target Fermi energy also improves
the final value of the entropy per particle. The cooling
scheme could be further optimized by changing some of the
parameters in a time-dependent manner, as is commonly
done for the threshold in evaporative cooling. For the sake of
simplicity, we kept all parameters constant in our study.
Possible implementations of the energy-dependent

transmission.—The Peltier cooling scheme relies on a
transmission coefficient ensuring proper “energy filtering”
between the two gases.We now discuss possible realizations
of appropriate transmission functionswhich rely on state-of-
the-art projection techniques [45–47]. The details of the two
envisioned possibilities are discussed in the Supplemental
Material [48]. We mainly consider two distinct forms [see
Fig. 4(b)]. First, a narrow (delta-function-like) transmission
in energy which can, for example, be realized by a single
resonant level (or many in parallel) [54]. Such a narrow
energy filter [55], has been predicted to achieve the maxi-
mization of the cooling efficiency or, equivalently, of the
thermoelectric figure of merit. Second, an approximately
boxlike transmission realized by two such resonant levels in
series as discussed in the mesoscopic context [7,56]. Such a
boxlike transmissionwith a finitewidth in energy is expected
to show the maximum cooling power and best cooling rate
(see Ref. [7] and the Supplemental Material [48]).
The results for the cooling rates as a function ofTS=TFS are

displayed in Fig. 4(a). As predicted, the idealized boxlike
transmission (solid green line) allows for reaching a very low
temperature with a fast cooling rate. Two quantum dots
connected in series [blue dotted curve in Fig. 4(a)] realize a
goodapproximation to theboxlike transmission andachieve a
final entropy per particle which is only slightly higher. We
also considered a single resonant level (red dashed-dotted

curve), with a width such that a low final entropy comparable
to that of the idealized box is achieved. In contrast to the latter,
this leads to amuch slower cooling rate [57]. This low cooling
rate can, to some extent, be overcome by usingmany resonant
levels in parallel (orange dashed curve): a fast initial cooling is
then observed, comparable to that of the idealized box. In
summary, we have identified two different ways of realizing
efficient cooling, either by connecting relatively broad
resonant levels in series, or by using a large number of
narrow resonant levels in parallel. The attainable values of
TS=TFS remain, in all considered cases, significantly better
than what can be achieved from evaporation only.
Conclusion.—In this Letter, we have introduced a Peltier

cooling scheme for fermionic gases, which combines
conventional evaporation with energy-selective injection
of particles. In a nutshell, this scheme can be described as a
simultaneous evaporative cooling of particles and holes.
We have proposed different realizations of the proper
energy filtering between the reservoir and the cooled
system, in line with the recent development of mesoscopic-
like channels in cold atom gases [37,58]. The proposed
scheme achieves fast and efficient cooling down to temper-
atures deep in the quantum degenerate regime, a much
desired current goal in the field of atomic fermion gases.
The present work also demonstrates that the recent funda-
mental studies of coupled particle and entropy transport in
cold atomic gases [26–35] may also have useful implica-
tions for further experimental developments in the field.
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FIG. 4 (color online). (a) Dimensionless cooling rate ηðtÞτ0 as a
function of TS=TFS, for Δε ¼ 0.96E0

FS and various transmissions
centered at ε0 ¼ 0.99E0

FS (the other parameters are taken as in
Fig. 2): The (red) dotted-dashed and (orange) dashed curve
correspond to a single and 100 parallel resonant level(s),
respectively, with Γ ¼ 1 · 10−3E0

FS. The (blue) dotted curve is
for two resonant levels in series of width Γ ¼ 0.03E0

FS and the
(green) solid curve is for an ideal box transmission. The (black)
dashed-dotted curve shows the evaporative cooling only. (b) The
corresponding energy-dependent transmission coefficients. The
grey area indicates states above ε1, while the blue one indicates
those below Δε, which do not participate in transport.

FIG. 3 (color online). Dimensionless cooling rate ηðtÞτ0 as a
function of TS=TFS, for the same parameters as in Fig. 2. The
black dashed curve is for evaporative cooling only. Arrows
indicate the direction of the time evolution. The horizontal
(red) line indicates a typical heating rate (see, e.g., [43]) limiting
these cooling processes.
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