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The average result of a weak measurement of some observable A can, under postselection of the
measured quantum system, exceed the largest eigenvalue of A. The nature of weak measurements, as well
as the presence of postselection and hence possible contribution of measurement disturbance, has led to a
long-running debate about whether or not this is surprising. Here, it is shown that such “anomalous weak
values” are nonclassical in a precise sense: a sufficiently weak measurement of one constitutes a proof of
contextuality. This clarifies, for example, which features must be present (and in an experiment, verified) to
demonstrate an effect with no satisfying classical explanation.
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In 1988 Aharonov, Albert and Vaidman explained “how
the result of a measurement of a component of the spin of a
spin-1

2
particle can turn out to be 100.” [1] Defining the

weak value of an observable A for a quantum system
prepared in state jψi and postselected on giving the first
outcome of fjϕihϕj; I − jϕihϕjg,

Aw ¼ hϕjAjψi
hϕjψi ; ð1Þ

they exhibited a jψi and jϕi on a qubit for which Zw ¼ 100.
The motivation for weak values starts by considering a von
Neumann model [2] of the measurement of A. The strength
of the interaction between the system and “pointer” is then
drastically reduced, such that the pointer reading is corre-
lated only slightly with A. The weak value then arises as an
approximation of the average pointer reading to first order
in the interaction strength.
Weak values outside the eigenvalue range of A are

termed anomalous. Aside from possible practical applica-
tions (see Ref. [3] and references therein), it has been
suggested that such values have foundational significance.
For example, both their theoretical prediction and exper-
imental observation are said to shed light on “quantum
paradoxes” [4–9] and even the nature of time [10].
However, there is still no consensus on the most basic

question about anomalous weak values: to what extent do
they represent a genuinely nonclassical effect? The lesser
the extent, the more severe are the limitations on their
practical and foundational significance.
The arguments that anomalous weak values are non-

classical have often been somewhat heuristic, appearing
to depend on issues such as the extent to which weak
measurements should be called measurements at all
[11,12]. Perhaps the most rigorous evidence provided so
far is a connection between anomalous weak values and
the failure of a notion of classicality called “macroscopic
realism” [13–15]. On the other hand, classical models

have been given that reproduce various aspects of the
phenomena [16–18].
The question can be made precise by asking if anoma-

lous weak values constitute proofs of the incompatibility of
quantum theory with noncontextual ontological models
[19], or equivalently [20] if anomalous weak values require
negativity in all quasiprobability representations. This was
conjectured to be the case in Ref. [21]. Here I will prove it.
Interestingly, the proof hinges on two issues already
identified in the literature: what do weak measurements
measure, and how much do they disturb the system? It
transpires that both questions have clear answers in the
setting of a noncontextual ontological model, but the
particular information-disturbance tradeoff of the weak
measurements in quantum theory makes these answers
irreconcilable with the anomaly.
Let us begin by specifying exactly what is meant by an

anomalous weak value. Inspection of Eq. (1) shows that
Aw need not be real even though A is Hermitian. A
complex number will certainly not be a convex combi-
nation of the eigenvalues of A, and so this might be seen
as surprising. However, the imaginary part of Aw is
manifested very differently from the real part [22].
Indeed, complex weak values are easily obtained even
in the Gaussian subset of quantum mechanics, which has
weak measurements (with the same information-tradeoff
disturbance utilized here) and yet admits a very natural
noncontextual model [23]. Hence, I will call a weak
value Aw anomalous only when ReðAwÞ is smaller than
the smallest eigenvalue of A, or larger than the largest
eigenvalue of A.
A simplification can be obtained by substituting the

spectral decomposition A ¼ P
aaΠðaÞ into the rhs of

Eq. (1) and taking the real part:

ReðAwÞ ¼
X
a

aRe

�hϕjΠðaÞjψi
hϕjψi

�
¼

X
a

aReðΠðaÞ
w Þ:
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If we had 0 ≤ ReðΠðaÞ
w Þ ≤ 1 for all a then Aw could not be

anomalous. Hence, an anomalous weak value for any
observable always implies an anomalous weak value for

a projector. Since
P

aΠ
ðaÞ
w ¼ Iw ¼ 1, if one projector has

ReðΠðaÞ
w Þ > 1 then another must have ReðΠða0Þ

w Þ < 0. In
conclusion, without loss of generality we can always take
the anomalous weak value to be associated with projectorΠ
having ReðΠwÞ < 0.
I will now briefly review the relevant notion of non-

contextuality, following Ref. [19] (where the definitions
are motivated and compared to the traditional definition
of noncontextuality due to Kochen and Specker [24]).
Assumptions of noncontextuality are constraints on an
ontological model. I will only need two notions: measure-
ment noncontextuality, and outcome determinism for
sharp measurements. (The latter can be shown to itself
follow from the assumption of preparation noncontextual-
ity together with some simple facts about quantum theory,
see Refs. [19,25] for details.)
Suppose we prepare a quantum system in some way,

represented in quantum theory by a state jψi. In an
ontological model the preparation is represented by a
probability distribution pðλÞ over a set of ontic states Λ.
Suppose we now implement the positive operator valued
measure (POVM) fEkg. In a measurement noncontextual
model, this is represented by a conditional probability
distribution fpðEkjλÞg. The assumption of measurement
noncontextuality is what allows us to write pðEkjλÞ as a
function of the effect Ek and the ontic state λ only, with no
dependence on other things (“contexts”), such as the other
elements of the POVM or details of how the POVM was
implemented. Outcome determinism for sharp measure-
ments is the assumption that pðΠjλÞ ∈ f0; 1g for all
projectors Π and ontic states λ, so that any inability to
predict the outcome of a projective measurement is due
purely to ignorance of λ.
The final requirement, for any ontological model, is that

when we marginalize over the ontic states, the model must
reproduce the predictions of quantum theory:

hψ jEkjψi ¼
Z
Λ
pðEkjλÞpðλÞdλ: ð2Þ

We can now state the main result, identifying certain
features in the measurement of anomalous weak values
that, taken together, defy noncontextual explanation.
Theorem 1: Suppose we have states jϕi and jψi, and a

generalized measurement [26] fMxgx∈R, such that
(a) the pre-and postselection are nonorthogonal, i.e.,

pϕ ≔ jhϕjψij2 > 0; ð3Þ

(b) the POVM is a projector plus unbiased noise, i.e.,

Ex ≔ M†
xMx ¼ pnðx − 1ÞΠþ pnðxÞ ~Π ð4Þ

for some projector Π, ~Π ¼ I − Π, and probability distri-
bution pnðxÞ with median x ¼ 0,
(c) we can define a probability pd (the “probability of

disturbance”) such that

S ≔
Z

∞

−∞
M†

xjϕihϕjMxdx ¼ ð1 − pdÞjϕihϕj þ pdEd ð5Þ

for some POVM fEd; I − Edg, and
(d) the values of x under the pre-and postselection have a

negative bias that “outweighs” pd, i.e., [27]

p− ≔
1

pϕ

Z
0

−∞
jhϕjMxjψij2dx >

1

2
þ pd

pϕ
: ð6Þ

Then there is no measurement noncontextual ontological
model for the preparation of jψi, measurement of fMxg,
and postselection of jϕi satisfying outcome determinism
for sharp measurements.
Showing that operators fMxg with these properties

actually exist whenever we have a jψi, jϕi, and Π with
ReðΠwÞ < 0 is a routine calculation in the theory of weak
measurement [1,22,28], postponed until later. Loosely
speaking, if g ≪ 1 is the strength of the measurement then
to leading order ðp− − 1

2
Þ ∼ g whereas pd ∼ g2.

Proof.—Suppose such an ontological model exists. We
can consider the weak measurement fMxg followed by
the projective measurement fjϕihϕj; I − jϕihϕjg as one
“consolidated measurement,” represented by the POVM
fSxg∪fFxg, where Sx ¼ M†

xjϕihϕjMx and Fx ¼ M†
xðI−

jϕihϕjÞMx. The key question is how the fSxg are repre-
sented in the model, because Eq. (2) gives

jhϕjMxjψij2 ¼ hψ jSxjψi ¼
Z
Λ
pðSxjλÞpðλÞdλ: ð7Þ

Let us consider two methods for implementing the
POVM fExg. By the assumption of measurement non-
contextuality they must both lead to the same pðExjλÞ. The
first method is to implement the consolidated measurement
and then ignore the result of the postselection, giving
pðExjλÞ¼pðSxjλÞþpðFxjλÞ. The second method, accord-
ing to Eq. (4), is to measure fΠ; ~Πg and then classically
sample from pnðx − 1Þ or pnðxÞ as appropriate. Hence, we
also have pðExjλÞ¼pnðx−1ÞpðΠjλÞþpnðxÞpð ~ΠjλÞ. Since
the median of pnðxÞ is 0 we have

R
0
−∞ pnðx − 1Þdx ≤R

0
−∞ pnðxÞdx ¼ 1

2
. Combining this with pðSxjλÞ ≤ pðExjλÞ

from the first method, we have

Z
0

−∞
pðSxjλÞdx ≤

Z
0

−∞
pðExjλÞdx ≤

1

2
: ð8Þ

Next, we apply the assumption of measurement non-
contextuality to the POVM fS; I − Sg. One way to imple-
ment this is to use the consolidated measurement and
ignore x; hence, pðSjλÞ ¼ R∞

−∞ pðSxjλÞdx. A second way,
according to Eq. (5), is to measure fjϕihϕj; I − jϕihϕjg
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with probability 1 − pd and fEd; I − Edg with probability
pd. Hence, pðSjλÞ ¼ ð1 − pdÞpðjϕihϕjjλÞ þ pdpðEdjλÞ.
Finally, we calculate the model’s prediction for p−.

Using outcome determinism for the sharp measurement
fjϕihϕj; I − jϕihϕjg we can partition Λ into fΛ0;Λ1g,
where pðjϕihϕjjλÞ ¼ i for λ ∈ Λi. From the above we have
that

R
0
−∞ pðSxjλÞdx ≤ pðSjλÞ ≤ pd on Λ0. Hence, splitting

the rhs of Eq. (7) into integrals over Λ0 and Λ1 and
integrating over x < 0 gives

Z
0

−∞
jhϕjMxjψij2dx ≤

Z
0

−∞

Z
Λ1

pðSxjλÞpðλÞdλdxþ pd:

Applying Eq. (8) and recalling that Eq. (2) givesR
Λ1
pðλÞdλ ¼ R

Λ pðjϕihϕjjλÞpðλÞdλ ¼ jhϕjψij2 ¼ pϕ, this
gives

1

pϕ

Z
0

−∞
jhϕjMxjψij2dx ≤

1

2
þ pd

pϕ
; ð9Þ

in contradiction to Eq. (6).
As promised, I will now confirm that a projector Π with

ReðΠwÞ < 0 implies the existence of a measurement fMxg
with the properties assumed in Theorem 1.
Similarly to Ref. [1], the measurement begins by

preparing a probe system in the Gaussian state jΨi ¼
N
R∞
−∞ expð−x2=2σ2Þjxidx, with N ¼ ðπσ2Þ−1=4. This

interacts with the system via the unitary (with ℏ ¼ 1)

U ¼ expð−iΠPÞ ¼ expð−iPÞΠþ ~Π; ð10Þ

which defines our units of momentum and hence length,
and then the probe is projectively measured in the fjxihxjg
basis. On the system this is a generalized measurement
withMx ¼ hxjUjΨi. Recalling thatP generates translations
we have

Mx ¼ N exp

�
−
ðx − 1Þ2
2σ2

�
Πþ N exp

�
−

x2

2σ2

�
~Π: ð11Þ

This becomes a projective measurement in the limit
σ → 0, whereas it is known as a weak measurement for
large σ. We can now calculate

Ex ¼ M†
xMx ¼ pnðx − 1ÞΠþ pnðxÞ ~Π; ð12Þ

where pnðxÞ ¼ N2 expð−x2=σ2Þ has median x ¼ 0.
Recalling that pnðxÞ is normalized and defining

Δ ≔
Z

∞

−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnðx − 1ÞpnðxÞ

p
dx ¼ exp

�
−

1

4σ2

�
; ð13Þ

we obtain

S ¼
Z

∞

−∞
M†

xjϕihϕjMxdx

¼ ΠjϕihϕjΠþ ~Πjϕihϕj ~Πþ ΔðΠjϕihϕj ~Πþ ~ΠjϕihϕjΠÞ

¼ 1þ Δ
2

jϕihϕj þ 1 − Δ
2

ðΠ − ~ΠÞjϕihϕjðΠ − ~ΠÞ:
ð14Þ

Setting pd ¼ð1−ΔÞ=2< 1 and Ed¼ðΠ− ~ΠÞjϕihϕjðΠ− ~ΠÞ
(which is a projector) we have Eq. (5).
Finally we need to calculate

p− ¼ 1

pϕ

Z
0

−∞
jhϕjMxjψij2dx

¼ AjΠwj2 þ Bj ~Πwj2 þ 2CReðΠw
~Π�
wÞ; ð15Þ

where we have recalled Eq. (1) and defined the integrals

A ¼
Z

0

−∞
pnðx − 1Þdx ¼ 1

2

�
1 − erf

�
1

σ

��
; ð16Þ

B ¼
Z

0

−∞
pnðxÞdx ¼ 1

2
; ð17Þ

C ¼
Z

0

−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnðx − 1ÞpnðxÞ

p
dx

¼ 1

2
exp

�
−

1

4σ2

��
1 − erf

�
1

2σ

��
: ð18Þ

Expanding around 1=σ ¼ 0 we find A ≈ 1
2
− (1=ð ffiffiffi

π
p

σÞ)
and C ≈ 1

2
− (1=ð2 ffiffiffi

π
p

σÞ). Since Πw þ ~Πw ¼ Iw ¼ 1 this
gives

p− ≈
1

2
−

1ffiffiffi
π

p
σ
ReðΠwÞ: ð19Þ

Meanwhile to leading order pd ≈ 1=8σ2. Hence, provided
ReðΠwÞ < 0, for sufficiently large σ we will satisfy Eq. (6).
It is worth emphasizing that no approximations were made
in the proof of Theorem 1, and in a concrete case one can
simply plug values of σ into the exact formulas above to
verify Eq. (6).
I will conclude by outlining three interconnected lessons

from Theorem 1. The first is a classification of how
anomalous weak values could arise in an ontological
model. One possibility (perhaps the most common realist
interpretation of anomalous weak values) is that some ontic
states are predisposed to manifest such values, in violation
of the first application of measurement noncontextuality
using Eq. (4). Alternatively (along the lines of Ref. [18]) the
weak measurement may disturb the system much more
than the quantum formalism would suggest, in violation of
the second application. The final possibility is that the
postselection is not represented outcome deterministically
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(as in the interpretation where the ontic state is simply the
quantum state) and so fails to identify a particular set of
ontic states.
The second lesson is that a large number of aspects of

the manifestation of anomalous weak values seem to be
involved in preventing noncontextual explanation. The
“anomaly” itself is only one ingredient. Some others may
have been anticipated, such as the favorable information-
disturbance tradeoff of weakmeasurements. But some seem
somewhat surprising, for example the importance of the
postselection being a projective measurement.
The final lesson is an indication of what it would take for

an experiment involving anomalous weak values to exclude
noncontextual theories that would provide a good classical
explanation. Merely observing “anomalous pointer read-
ings” under pre- and postselection is far from sufficient.
Most fundamentally, the experiment must show that the
probabilities in the statement of Theorem 1 really are the
probabilities of discrete events, rather than mere (normal-
ized) intensities. An experiment consistent with a classical
field theory, so far the most common way to observe weak
values, is therefore not sufficient [29]. One would also need
to provide evidence for an operational version of Eqs. (4)
and (5). Notice that these would be statements about
how the weak measurement works on all preparations,
not just the one corresponding to jψi. Furthermore, one
would need an operational counterpart to the inference
from preparation noncontextuality to outcome determinism
for the postselection measurement, perhaps by implement-
ing preparations that make the postselection highly pre-
dictable (see Ref. [32] for how this can be done in more
traditional proofs of contextuality). Turning these ideas into
a concrete experimental proposal is an interesting avenue
for future work.
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