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The quantum spin liquid is an exotic quantum state of matter in magnets. This state is a spin analog of
liquid helium that does not solidify down to the lowest temperature due to strong quantum fluctuations. In
conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other
by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin
liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases
at low temperatures are always distinguished from the high-temperature paramagnet (spin gas) by a phase
transition. The results challenge the common belief that the absence of thermodynamic singularity down to
the lowest temperature is a symptom of a quantum spin liquid.
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
X

hijix
σxi σ

x
j − Jy

X

hijiy
σyi σ

y
j − Jz

X

hijiz
σziσ

z
j: ð1Þ

Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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interactions. The model has been studied not only from the
mathematical virtue of the exact solvability but also from the
experimental relevance to some Ir oxides [13].
A 3D extension of the Kitaev model is defined on the

hyperhoneycomb lattice shown in Fig. 1(b) [11]. This
model has relevance to recently discovered iridates
Li2IrO3 [14,15]. There are three types of nearest neighbor
bonds in this lattice as in the honeycomb lattice. Many
fundamental aspects in the 3D Kitaev model are inherited
from the original 2D one, including the exact solvability. In
particular, the ground state phase diagram is completely the
same as that in two dimensions in Fig. 1(c) [11]. On the
other hand, the difference in the spatial dimension may
matter to finite-T properties; while no phase transition is
expected at a finite T for the 2D Kitaev model [16–18], we
may anticipate a finite-T phase transition in the 3D case.
We investigate the thermodynamic properties of the 3D

Kitaev model by adopting a MC simulation. Since the
model given in Eq. (1) is defined on the bipartite lattices,
the conventional quantum MC method on the basis of the
Suzuki-Trotter decomposition can be applied at first glance.
However, due to the bond-dependent interactions in the
Kitaev model, the method suffers from the negative sign
problem. To avoid the problem, we use an alternative MC
method as described below. By applying the Jordan-Wigner
transformation [21–23] and rewriting the resulting spinless
fermions by Majorana fermions, the Hamiltonian is written
in the form

H ¼ iJx
X

x bonds

cwcb − iJy
X

y bonds

cbcw − iJz
X

z bonds

ηrcbcw; ð2Þ

where c and c̄ are the Majorana fermion operators, and
ηr ¼ ic̄bc̄w are Z2 variables defined on each z bond (r is the
bond index): the eigenvalues are �1 [22]. As the hyper-
honeycomb lattice is bipartite, we term black (b) and white
(w) sites so that, on each x bond, the smaller (larger) i site
corresponds to the white (black) site, where the numbering
for sites is done along chains consisting of x and y bonds, as
shown in Fig. 1(b). The Hamiltonian in Eq. (2) is a free
Majorana fermion system coupled with the Z2 degree of
freedom fηrg on each z bond. Formally, the model is
similar to the double-exchange model with Ising localized
spins. This allows us to apply the MC algorithms developed
for the double-exchange models. Here, we adopt the
conventional algorithm in which the MC weight for a
given configuration of fηrg is obtained by the exact
diagonalization of the Majorana fermions [24]. We impose
the open boundary conditions for the a and b directions and
the periodic boundary condition for the c direction to avoid
a subtle boundary problem intrinsic to the Jordan-Wigner
transformation [see Fig. 1(b)]. The cluster size N ¼ 4L3, in
which the calculations are performed, is taken up to L ¼ 6.
The details of calculation methods are given in the
Supplemental Material [18].
Figure 2(a) shows the T dependence of the specific heat

Cv for the isotropic case with Jx ¼ Jy ¼ Jz ¼ 1=3. There
are two peaks in Cv. The high-T peak at T ∼ 0.6 does not
show the size dependence. On the other hand, the low-T
peak located at T ∼ 0.004 grows with increasing the system
size as shown in Fig. 2(b). This is a signature of the phase
transition between the low-T QSL phase and the high-T
paramagnetic state, as firmly supported by the perturbation
arguments below. The size extrapolation of the peak
temperature T 0

c gives the estimate of the critical temperature
in the thermodynamic limit as Tc ¼ 0.00519ð9Þ [see the
inset of Fig. 2(b)] [25]. In contrast, the 2D Kitaev model
does not show such a growing peak in the specific heat,
indicating the absence of the finite-T phase transition [18].
By performing the simulation for various sets of Jx, Jy,

and Jz, we obtain the finite-T phase diagram of the
3D Kitaev model. The results are summarized in Fig. 3.
Figure 3(a) shows Tc as a function of the anisotropy
parameters α and α0 shown in the inset [Fig. 3(b) is the log
plot of the same data]. The critical temperature Tc takes the
maximum value at α≃ 1 corresponding to the isotropic
case, and decreases to zero as α → 0 and α → 3=2.
The limit of α → 0 corresponds to Jz → 1 with
Jx ¼ Jy ¼ J → 0. This limit was discussed by MC simu-
lation for the effective model obtained by the perturbation
theory in terms of J=Jz [26]. A finite-T transition was
found at Tc ¼ ~Tc × 7J6=ð256J5zÞwith ~Tc ¼ 1.925ð1Þ. This
asymptotic form of Tc is plotted by the solid lines in
Figs. 3(a) and 3(b). It shows fairly good agreement with the

(a)

Gapped

Gapless

(c)

(b)

Jx=0, Jy=0, Jz=1

Jx=1, Jy=0, Jz=0 Jx=0, Jy=1, Jz=0

FIG. 1 (color online). (a) Two-dimensional honeycomb lattice
and (b) three-dimensional hyperhoneycomb lattice. Blue, green,
and red bonds denote the exchange couplings Jx, Jy, and Jz in the
Kitaev Hamiltonian, respectively. The shaded plaquette on each
lattice represents the shortest loop p for which the Z2 variableWp
is defined. a, b, and c represent the primitive translation vectors.
(c) Phase diagram of the Kitaev model at zero temperature,
common to the models on the honeycomb and on the hyper-
honeycomb lattices. This diagram is depicted on the plane where
the condition Jx þ Jy þ Jz ¼ 1 is satisfied. There are two kinds
of phases, gapped and gapless spin liquids distinguished by the
excitation gap.
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present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc

is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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FIG. 2 (color online). (a) Temperature dependence of the
specific heat in the isotropic case with Jx ¼ Jy ¼ Jz ¼ 1=3
(α ¼ 1). (b) The enlarged view in the vicinity of the low-
temperature peak. The calculations were performed for the
systems on the hyperhoneycomb lattice with N ¼ 4L3 spins
up to L ¼ 6. The inset in (b) shows the peak temperature T 0

c of the
specific heat as a function of the inverse of the system sizeN. The
dotted line represents the linear fit for the three largest N.
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FIG. 3 (color online). Finite-temperature phase diagram of
the 3D Kitaev model. (a) Cut of the phase diagram along the
α and α0 axes shown in the insets. Log-scale plot for (a) is shown
in (b). The solid (dashed) line is the α dependence of Tc obtained
by the perturbation expansion in terms of J=Jz (Jz=J), where
J ¼ Jx ¼ Jy. (c) 3D plot of the phase diagram in the whole
parameter space. The base triangle represents the ground state
phase diagram shown in Fig. 1(c).
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entropy per site S in Fig. 4(b), obtained by the numerical
integration of Cv divided by T. By decreasing T, the
entropy decreases from ln 2 corresponding to the high-T
peak in Cv and approaches 1

2
ln 2. In the T region between

the two peaks in Cv, the entropy stays at≃ 1
2
ln 2. As further

decreasing T, the entropy rapidly deceases again corre-
sponding to the low-T peak in Cv, and approaches zero
toward T ¼ 0. The successive entropy release is ascribed to
a separation of the energy scales for the Majorana fermions
and the Z2 variables ηr. Namely, while decreasing T, the
entropy of 1

2
ln 2 associated with Majorana fermions is first

gradually released at T ∼ 0.1–1, corresponding to their
kinetic energy scale ∼Jx þ Jy þ Jz ¼ 1. Subsequently, the
remaining entropy of 1

2
ln 2, associated with the Z2 varia-

bles, is released at the phase transition. This lower energy
scale is set by the effective interactions between the Z2

variables mediated by Majorana fermions, which depend
on the anisotropy of the system. We confirm this picture by
calculating ~W defined as the thermal average of the density
of the Z2 variables Wp ¼ �1 for each ten-site loop [see
Fig. 1(b)], which is computed by the product of ηr [18].
Figure 4(c) shows the T dependence of ~W. This quantity
rapidly increases at the lower-T peak in Cv as T decreases.
Therefore, the entropy of 1

2
ln 2 is released according to the

coherent growth of Wp at Tc.
However, it is worth noting that the phase transition at Tc

is not caused by the symmetry breaking in terms of the local
variables Wp. Instead, the phase transition will be under-
stood by the topological nature of excited states as follows.

The excited states are generated by flipping Wp from the
ground state where all Wp ¼ þ1. The flipped Wp ¼ −1
form loops because of the local constraints originating from
the fundamental spin-1=2 algebra [11]. The excitation
energy of loops and their configurational entropy compete
with each other, which may lead to the phase transition at a
finite T, as is discussed by Peierls for the 2D Ising model
[27]. This picture was indeed confirmed in the limit of
Jz ≫ Jx, Jy, through the winding number defined for Wp
[26]. In the present case, however, the winding number
cannot be defined, as the calculations are done under the
open boundary conditions in the a and b directions.
Instead, we calculate the thermal average of the Wilson
loop along the edge of the ab plane, ~WC, which serves as
an alternative parameter to the winding number [18]. As
shown in Fig. 4(d), ~WC behaves like an order parameter: it
becomes nonzero below Tc [25]. The situation is in sharp
contrast to the 2D Kitaev model, where the excitation with
Wp ¼ −1 is allowed independently without local con-
straints, and, consequently, the QSL is adiabatically con-
nected to the high-T paramagnet.
Our results on the topological transition suggest a new

paradigm of critical phenomena beyond the Ginzburg-
Landau-Wilson (GLW) theory. Because of the lack of local
order parameter, the description based on the GLW theory
is no longer applicable to the vaporization of QSLs. Such
nontrivial finite-T phase transitions have been studied by
the mean-field approximations for 3D Z2 QSLs on the basis
of the Z2 gauge theory [28,29]. To understand the critical
properties, however, it is necessary to take into account
fluctuations of a topological structure in the excitations
beyond the mean-field approach. The current study
presents the first unbiased results on topological transitions,
which may give birth to a new concept of critical phenom-
ena beyond the conventional GLW theory.
It will also be interesting to consider the “solidification”

of QSLs. Indeed, the solid phase (magnetically ordered
phase) is accessible in the context of the present 3D Kitaev
model, by considering additional interactions which favor a
magnetic order, such as the Heisenberg exchange inter-
action [30,31]. The detailed study of the magnetic three
states of matter, liquid, gas, and solid will provide a new
insight in the research area of magnetism.
The present results give a counterexample to the conven-

tional “myth” of QSLs: the absence of phase transition is
a requirement for the QSL. This myth has long haunted
the experimental identification of QSLs. Our results, how-
ever, indicate that a phase transition does not always
signal symmetry breaking by a magnetic long-range order.
This will urge reconsideration of the experimental detection
of QSLs; even if the system exhibits a phase transition, it
should not be excluded from the candidates forQSLs, as long
as a clear indication of magnetic ordering is not established.

We thank L. Balents, M. Imada, and O. Tchernyshyov
for fruitful discussions. J. N. is supported by the Japan

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

L=5 L=6
=0.5
=0.75
=1.0

T
 10-5 10-4  10-3  10-2  10-1  100  101

C
v

S
 / 

ln
 2

W~
(a)

(b)

(c)

(d)

FIG. 4 (color online). Temperature dependences of (a) the
specific heat, (b) entropy, (c) Z2 variables Wp per ten-site
plaquette ~W, and (d) the Wilson loop ~WC.

PRL 113, 197205 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 NOVEMBER 2014

197205-4



Society for the Promotion of Science through a research
fellowship for young scientists. This work is supported by a
Grant-in-Aid for Scientific Research, the Strategic Programs
for Innovative Research (SPIRE), MEXT, and the
Computational Materials Science Initiative (CMSI), Japan.
Parts of the numerical calculations are performed in the
supercomputing systems in ISSP, the University of Tokyo.

[1] L. Balents, Nature (London) 464, 199 (2010).
[2] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and

G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
[3] S. Nakatsuji et al., Science 309, 1697 (2005).
[4] J. S. Helton et al., Phys. Rev. Lett. 98, 107204 (2007).
[5] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi,

Phys. Rev. Lett. 99, 137207 (2007).
[6] M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M.

Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Science
328, 1246 (2010).

[7] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[8] S.Yan,D. A.Huse, andS. R.White,Science332, 1173(2011).
[9] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86,

024424 (2012).
[10] A. Kitaev, Ann. Phys. (Berlin) 321, 2 (2006).
[11] S. Mandal and N. Surendran, Phys. Rev. B 79, 024426

(2009).
[12] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett.

98, 247201 (2007).
[13] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205

(2009).
[14] K. A. Modic et al., Nat. Commun. 5, 4203 (2014).

[15] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, and H.
Takagi, arXiv:1403.3296.

[16] C. Castelnovo and C. Chamon, Phys. Rev. B 76, 184442
(2007).

[17] Z. Nussinov and G. Ortiz, Phys. Rev. B 77, 064302 (2008).
[18] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.197205, which in-
cludes Refs. [19,20], for details of the calculation method,
thermodynamic properties in 2D Kitaev model, and pertur-
bation expansions.

[19] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607
(1986).

[20] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

[21] H.-D. Chen and J. Hu, Phys. Rev. B 76, 193101 (2007).
[22] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98,

087204 (2007).
[23] H.-D. Chen and Z. Nussinov, J. Phys. A 41, 075001 (2008).
[24] S. Yunoki, J. Hu, A. Malvezzi, A. Moreo, N. Furukawa, and

E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).
[25] The finite-size scalings for Cv and ~Wc are not satisfactory

for the present data sets, presumably because of the limited
system sizes.

[26] J. Nasu, T. Kaji, K. Matsuura, M. Udagawa, and Y. Motome,
Phys. Rev. B 89, 115125 (2014).

[27] R. Peierls, Proc. Cambridge Philos. Soc. 32, 477 (1936).
[28] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850 (2000).
[29] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[30] E. K.-H. Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim,

Phys. Rev. B 89, 045117 (2014).
[31] I. Kimchi, J. G. Analytis, and A. Vishwanath, arXiv:

1309.1171.

PRL 113, 197205 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 NOVEMBER 2014

197205-5

http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1126/science.1114727
http://dx.doi.org/10.1103/PhysRevLett.98.107204
http://dx.doi.org/10.1103/PhysRevLett.99.137207
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.79.024426
http://dx.doi.org/10.1103/PhysRevB.79.024426
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1038/ncomms5203
http://arXiv.org/abs/1403.3296
http://dx.doi.org/10.1103/PhysRevB.76.184442
http://dx.doi.org/10.1103/PhysRevB.76.184442
http://dx.doi.org/10.1103/PhysRevB.77.064302
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1103/PhysRevB.76.193101
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1103/PhysRevLett.80.845
http://dx.doi.org/10.1103/PhysRevB.89.115125
http://dx.doi.org/10.1017/S0305004100019174
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.89.045117
http://arXiv.org/abs/1309.1171
http://arXiv.org/abs/1309.1171

