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We consider general locally interacting arbitrary-dimensional lattice spin systems that are gapped for any
system size. We show under reasonable conditions that nondegenerate ground states of such systems obey
the entanglement area law. In so doing, we offer an intuitive picture on how a spectral gap restricts the
correlations that a ground state can accommodate and leads to such a special feature.
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Over the last decade or so, quantum information theory
has emerged as an indispensable tool in studying strongly
correlated many-body systems. For example, entanglement
is essential in classifying quantum phases of matter [1–3],
especially topological quantum phases [4,5], the density
matrix renormalization group (DMRG) method provides
the best way to numerically simulate low energy physics of
one-dimensional spin systems [6], and various universal
features of general many-body systems have been explored
with new tools and insights [7–11].
While there are many different avenues in such quantum

information approaches to many-body physics, they are
essentially built upon the grounds of common theoretical
foundations. The entanglement area law (or simply the area
law) is one of the most prominent [12]. For a many-body
pure state jΨ0i, the bipartite entanglement between a
subregion (A) and the rest (B) is quantified by the
entanglement entropy SðρAÞ, the von Neumann entropy
of the reduced density matrix ρA ¼ TrBjΨ0ihΨ0j. When
SðρAÞ has an upper bound proportional to the surface area
of A, we say jΨ0i obeys the area law [12]. It turns out that
ground states of local Hamiltonians typically obey the area
law [13–23], possibly with a multiplicative logarithmic
correction [3,24,25], although one can deliberately con-
struct a counterexample [26]. The area law is indeed a very
special feature because in a large Hilbert space, almost all
states, in the sense of the Haar measure, exhibit a volume-
law scaling of the entanglement entropy; the states obeying
the area law actually belong to a measure-zero set [27,28].
This anomaly leads to diverse and profound implications
across various fields, e.g., in classical simulations of
quantum systems [6], topological quantum phases [4,5],
and Hamiltonian complexity theory [29]. Conceptually, the
area law is also reminiscent of the holographic principle
[30]. It has thus been of crucial importance to find out the
general mechanism and criteria of the area law. In particu-
lar, one of the prominent open problems has been whether
the area law is generally obeyed in gapped local systems in
high dimension, since its one-dimensional problem was
solved in Ref. [15].

In this context, the fundamental question in hand is
concerning the entanglement entropy of the ground state

jΨðNÞ
0 i of a general local N-body Hamiltonian HðNÞ having

a finite spectral gap ΔN for sufficiently large N [15]. As it
turned out, in an arbitrary spatial dimension, proving (or
disproving) the area law in such a general case is a daunting
task at present. From a practical point of view, however, if
we are in a position to tackle ordinary many-body systems
(e.g., as in the context of classical simulations of quantum
systems [6]), we may bring in a few empirical assumptions
without sacrificing much of the generality, thereby signifi-
cantly relaxing the technical difficulties and furthermore
offering a clear-cut insight into the problem. Specifically,
we note that a many-body system is generally defined in
terms of its microscopic details (i.e., its constituent par-
ticles, mutual interactions, external potential, etc.), while
the system size N is actually variable. Formally speaking,
when HðNÞ is given, it is implicitly taken for granted that
there also exist Hamiltonians HðnÞ with n < N and,
importantly, all different HðnÞ share the common defining
characteristics of the system. For example, when we say a
certain system is gapped, it generally means that Δn ≥ Δ
for any nwith a lower boundΔ. Here, all the different-sized
ground states jΨðnÞ

0 i represent essentially the same matter
and in the thermodynamic limit, if it exists, any local
observable cannot discriminate between different N as it
becomes an intensive quantity. This makes it reasonable to

assume that jΨðnÞ
0 i and jΨðn−1Þ

0 i have a finite overlap
(i.e., they are nonorthogonal) after the boundary effect is
properly washed out (see Fig. 1) so that they share a
common subspace that encapsulates the characteristic
features of the system, e.g., the order parameters, correla-
tion functions, and so on. Otherwise, the bulk properties of
the system would be utterly unpredictable in practice as
they will be drastically altered by a microscopic change of
the system size, rendering the system unstable.
In this Letter, we consider such a practical situation and

prove the entanglement area law in arbitrary-dimensional
gapped local spin systems under two general conditions
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drawn from the above reasoning. Before proceeding, let us
first clarify our notation. We consider arbitrary systems of
N locally interacting finite-dimensional spins placed on a
D-dimensional lattice with one spin per site. For the
“localness” of the interaction to make sense, the lattice
has two properties. First, the Euclidean distance lEðs; s0Þ
and the graph distance lGðs; s0Þ between sites s and s0
satisfy lEðs; s0Þ ≤ a0lGðs; s0Þ for some constant a0.
Second, the number of sites in a unit volume ðδlÞD is
bounded by n0ðδlÞD for some constant n0. For given site s,
we define sets of neighboring sites as follows:

Bk
s ¼ fsite s0∶lGðs; s0Þ < kg:

The interaction being local means thatN-spin Hamiltonians
can be written as a sum of local terms supported on Bk0

s for
1 ≤ s ≤ N with k0 being a constant bounding the range of
the interaction. The trace distance between density matrices
ρ and σ is denoted by Dðρ; σÞ ¼ 1

2
jjρ − σjj1 ≤ 1 with jj · jj1

being the trace norm. The operator norm is denoted by
jj · jj∞.
The two conditions we impose are as follows. First, there

exist a sequence of Hamiltonians with different systems
sizes

f…; HðN−2Þ; HðN−1Þ; HðNÞg

having nondegenerate ground states

f…; jΨðN−2Þ
0 i; jΨðN−1Þ

0 i; jΨðNÞ
0 ig

and finite spectral gap Δn ≥ Δ for all n. Here, we index the
spins in such a way that the n-spin system is constructed by
adding the nth spin on the boundary of the (n − 1)-spin
system (see Fig. 1). As the interaction is local, HðnÞ and
Hðn−1Þ differ by a local term

Kn ¼ HðnÞ −Hðn−1Þ

supported on B2k0
n (not Bk0

n in general because there can be
distinct boundary terms). The interaction strength is finite,
which means jjKnjj∞ ≤ J for some constant J.
Second, for all n, the ground states jΨðnÞ

0 i and jΨðn−1Þ
0 i

have a finite overlap in the sense that there exist constants
μ0 and l0 such that

DðρðnÞnn;l0 ; ρ
ðn−1Þ
nn;l0 Þ ≤ μ0 < 1; ð1Þ

where ρðnÞns;k ¼ TrBk
s
jΨðnÞ

0 ihΨðnÞ
0 j (see Fig. 1). For l0 ¼ 1, this

condition means that when the ground state jΨðnÞ
0 i is written

in terms of the eigenstates ofHðn−1Þ and the states of spin n
as jΨðnÞ

0 i ¼ P
jαjjΨðn−1Þ

j ijϕjin, the coefficient α0 associ-

ated with the ground state jΨðn−1Þ
0 i is nonzero. Although

this seems intuitively natural, one can imagine a counter-
example, albeit quite artificial, in which the entire system
undergoes a quantum phase transition by a single change of
the particle number at the boundary [31]. As mentioned,
such an exceptional case is not of our interest in this work.
The main result of this Letter is the following theorem.
Theorem: Consider a lattice spin system satisfying the

above two conditions. Take a subregion A, which is a
D-dimensional ball of radius R0. For the ground state, the
entanglement entropy of this region is bounded as

SðρAÞ ≤ cD−1RD−1
0 þ cD−2RD−2

0 þ � � � þ c1R0 þ c0; ð2Þ

where cj’s are constants determined by above-defined
system parameters Δ, J, D, a0, n0, k0, l0, and μ0.
Hence, the upper bound of SðρAÞ scales as RD−1

0 , satisfying
the area law.
Here, we took the ball-shaped region to simplify the

proof. Generalization to the case of a different shape is
straightforward. Note that the area law makes sense only
for simple-shaped regions. For example, the surface area of
a fractal shape can be arbitrarily large.
The underlying idea of the proof is as follows. Take a

subregion A0 to be a D-dimensional ball of radius R0 þ r0
centered at the origin of region A with positive constant
r0 ≪ R0 to be chosen later (see Fig. 2). Suppose there
are M spins in region A, M þ L spins in region A0,
and N − ðM þ LÞ spins in the rest. Our strategy is to

take a particular sequence of ground states fjΨðMþLÞ
0 i;

jΨðMþLþ1Þ
0 i;…; jΨðNÞ

0 ig in the following way. (i) jΨðMþLÞ
0 i

is the ground state of the (M þ L)-spin system corre-

sponding to region A0. (ii) jΨðNÞ
0 i is the ground state of the

whole system. (iii) jΨðnÞ
0 i (M þ L < n < N) is the ground

state of an intermediate system. Here we choose the nth
spin, among N − ðn − 1Þ remaining ones, to be the one
having the shortest Euclidean distance to the origin,
whereby the shape of the system is retained as far as
possible for all n (see Fig. 2). For each ground state in the

FIG. 1 (color online). The (n − 1)-spin and n-spin systems
differ only locally. The reduced density matrices of the ground

states ρðn−1Þnn;l0 and ρðnÞnn;l0 are obtained by tracing out a local

neighborhood of spin n. In this illustration, l0 ¼ 3.
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sequence, we can obtain the reduced density matrix for

region A, fρðMþLÞ
A ;ρðMþLþ1Þ

A ;…;ρðNÞ
A g. Note that SðρðMþLÞ

A Þ
is bounded by the logarithm of the Hilbert space dimen-
sion for region A0 − A. Our initial bound

SðρðMþLÞ
A Þ ≤ L ≤ n0vD½ðR0 þ r0ÞD − RD

0 �
¼ n0vDr0DRD−1

0 þOðRD−2
0 Þ ð3Þ

thus exhibits the area-law scaling, where vD is the volume
factor for D-dimensional balls. We thus find that

SðρAÞ ¼ SðρðNÞ
A Þ ≤ SðρðMþLÞ

A Þ

þ
XN

n¼MþLþ1

½SðρðnÞA Þ − Sðρðn−1ÞA Þ� ð4Þ

exhibits the area-law scaling if the summation on the
right-hand side also does so for appropriately chosen r0.

In order to show this, we need to understand how jΨðn−1Þ
0 i

is mapped to jΨðnÞ
0 i.

The ensuing procedure is based on the following

intuitive picture. Suppose we try to identify jΨðnÞ
0 i with

Uk
njΨðn−1Þ

0 ijϕ0in, where Uk
n is a unitary operator supported

on Bk
n and jϕ0in is any state of spin n. In general, the exact

identity would be obtained only for sufficiently large k, i.e.,

jΨðnÞ
0 i ¼ U∞

n jΨðn−1Þ
0 ijϕ0in. However, one can see that the

spectral gap can play a role here in approximating U∞
n .

Note that both Hðn−1Þ and HðnÞ are gapped. If HðλÞ ¼
ð1− λÞðHðn−1Þ þ SnÞ þ λHðnÞ ¼ Hðn−1Þ þ ð1− λÞSn þ λKn
also remains gapped for 0 ≤ λ ≤ 1, where Sn ¼
ΔðI − jϕinhϕjÞ, we can then consider an adiabatic passage

from jΨðn−1Þ
0 ijϕ0in to jΨðnÞ

0 i. Intuitively,HðλÞ is likely to be
gapped for appropriately chosen jϕ0in since only a small

portion of the Hamiltonian is varied and jΨðn−1Þ
0 i and jΨðnÞ

0 i

are essentially the same kind of states and hence no
quantum phase transition occurs. For the moment, suppose
it is the case. If so, as the adiabatic passage can be done in a
finite time scale (inversely proportional to Δ) and the
Hamiltonian is varied only locally, the Lieb-Robinson
bound implies that the adiabatic process can affect the
system only (quasi-)locally, which means that U∞

n is

approximately local. One can thus write jΨðnÞ
0 i ¼

Ux0
n jΨðn−1Þ

0 ijϕ0in for some constant x0 up to a small error.
If we neglect the error for the moment, we can choose r0 to
satisfy r0 ≥ a0x0 so that every term in the summation of
Eq. (4) vanishes because Ux0

n does not act on region A,
resulting in the area law. Conceptually, what happens is that
the boundary effect spreads no further than r0 away and

thus ρðnÞA converges to ρA once n reaches the point where
region A does not recognize the existence of a boundary
any more.
In the above picture, we have made two logical jumps to

be resolved. First, it should be ensured that HðλÞ is indeed
gapped. Second, U∞

n is only approximately local and
thus we need to work out how the errors add up. As a
preliminary step, note that condition (1) implies there is

a unitary operator Vn acting on Bl0
n such that jhΨðnÞ

0 jVnj
Ψðn−1Þ

0 ijϕ0inj ≥ 1 − μ0 > 0, which follows from the

Uhlmann’s theorem [32]. Let HðnÞ
1 ¼ VnðHðn−1Þ þ SnÞV†

n.
This Hamiltonian preserves the gap condition and the

ground state is jξðnÞ0 i ¼ VnjΨðn−1Þ
0 ijϕ0in. For convenience,

letHðnÞ
2 ¼ HðnÞ and jηðnÞ0 i ¼ jΨðnÞ

0 i. LettingHðnÞ
0 be the sum

of all terms commonly appearing both in HðnÞ
1 and HðnÞ

2 , we

can write HðnÞ
f1;2g ¼ HðnÞ

0 þ hðnÞf1;2g, where hðnÞf1;2g are sup-

ported on Bl0þk0
n .

We are now ready to proceed. We have local

Hamiltonians HðnÞ
f1;2g ¼ HðnÞ

0 þ hðnÞf1;2g, which have a gap

lower bounded by Δ. Their ground states are jξðnÞ0 i and

jηðnÞ0 i, respectively, and jhξðnÞ0 jηðnÞ0 ij ≥ 1 − μ0 > 0. If we can

find an adiabatic path from jξðnÞ0 i to jηðnÞ0 i, we can also find

one from jΨðn−1Þ
0 ijϕ0in to jΨðnÞ

0 i up to a local unitary

operator Vn that does not affect SðρðnÞA Þ as long as r0 ≥ a0l0.
The key lemma for our proof is the following.
Lemma: Introduce an ancillary two-level system a and

consider a local Hamiltonian

~HðnÞðλÞ ¼ HðnÞ
s ðλÞ þ hðnÞa ðλÞ;

where

HðnÞ
s ðλÞ ¼ HðnÞ

0 þ ½hðnÞ1 þ λΔ� ⊗ j1iah1j
þ ½hðnÞ2 þ ð1 − λÞΔ� ⊗ j2iah2j;

hðnÞa ðλÞ ¼ fðλÞΔðj1iah2j þ j2iah1jÞ

A

A

r0R0

FIG. 2 (color online). Starting from a system corresponding to
region A0, the system is gradually enlarged while retaining its
shape as far as possible.
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with real non-negative smooth function fðλÞ for 0 ≤ λ ≤ 1.
fðλÞ vanishes at λ ¼ 0 and λ ¼ 1, and is maximized at λ ¼
1=2 with fð1=2Þ ¼ f0 > 0. There exists fðλÞ with f0 ¼
1=10ð1 − μ0Þ such that ~HðnÞðλÞ is gapped for all λ and the
minimal gap is at least ~Δ ¼ f0ð1 − μ0ÞΔ.
The underlying idea for the proof of this lemma is as

follows. Let hðnÞa ðλÞ ¼ 0 for the moment. HðnÞ
s ðλÞ alone is

then readily diagonalized by jξðnÞj ij1ia and jηðnÞj ij2ia, where
jξðnÞj i and jηðnÞj i are the eigenstates of HðnÞ

1 and HðnÞ
2 ,

respectively. As shown in Fig. 3(a), the two lowest energy

levels jξðnÞ0 ij1ia and jηðnÞ0 ij2ia become degenerate only at
λ ¼ 1=2. This degeneracy can be lifted by adding a term

that couples the two levels. hðnÞa ðλÞ plays this role as

jhξðnÞ0 jηðnÞ0 ij > 0. The detailed proof is presented in the
Supplemental Material [31]. Note that the ground state of
~HðnÞð0Þ is jξðnÞ0 ij1ia and that of ~HðnÞð1Þ is jηðnÞ0 ij2ia. The
lemma thus implies that there exists an adiabatic path from

jΨðn−1Þ
0 ijϕ0inj1ia to jΨðnÞ

0 ij2ia up to an irrelevant local
unitary transformation, where the Hamiltonian varies
locally on Bl0þk0

n and a.
Such a local adiabatic change preserves the area law, as

discussed in Ref. [22]. We tailor their method in the

remainder of our proof. Let j ~ΨðnÞ
0 ðλÞi be the ground state

of ~HðnÞðλÞ. By slightly modifying the derivation in
Ref. [33], one can construct an artificial Hamiltonian

governing the change of j ~ΨðnÞ
0 ðλÞi in λ, which turns out

to be approximately local in the following sense.
Exact adiabatic evolution: There exists an integer

constant ~l > l0 þ k0 such that

i
d
dλ

j ~ΨðnÞ
0 ðλÞi ¼

�
FðnÞ
~l
ðλÞ þ

X
j≥~lþ1

GðnÞ
j ðλÞ

�
j ~ΨðnÞ

0 ðλÞi; ð5Þ

where FðnÞ
~l
ðλÞ and GðnÞ

j ðλÞ are Hermitian, FðnÞ
~l
ðλÞ is

supported on B~l
n, G

ðnÞ
j ðλÞ is supported on Bj

n, and, fur-

thermore, jjGðnÞ
j ðλÞjj∞ < g0ðj − l0 − k0Þ−4D for some

constant g0. Here, ~l and g0 are determined by ~Δ,
maxλjdfðλÞ=dλjΔ, and jjhf1;2gjj∞ ≤ Jn0vDaD0 ðl0 þ k0ÞD.
The last ingredient of our proof is the small incremental

entangling theorem presented in Ref. [22].
Small incremental entangling theorem: Consider a

many-body system in a pure state jψi. The system is
divided into four regions A1, A2, A3, A4, and evolves by a
Hamiltonian H23 supported on region A2 þ A3. The
reduced density matrix for region A1 þ A2 at time t is
given by ρ12ðtÞ ¼ Tr34e−iH23tjψihψ jeiH23t. The growth rate
of the entanglement entropy S½ρ12ðtÞ� at any t is bounded as

d
dt

S½ρ12ðtÞ� ≤ cejjH23jj∞ log½minðd2; d3Þ�;

for some constant ce > 0, where dj is the Hilbert space
dimension for region Aj.
We are now ready to finish up our proof. Let us choose

r0 > a0~l. We can bound SðρðnÞA Þ − Sðρðn−1ÞA Þ as follows.
Suppose spin n has Euclidean distance R0 þ r to the origin

of region A with r ≥ r0. As j ~ΨðnÞ
0 ð0Þi and j ~ΨðnÞ

0 ð1Þi yield
entanglement entropies Sðρðn−1ÞA Þ and SðρðnÞA Þ for region A,

respectively, we can examine j ~ΨðnÞ
0 ðλÞi to obtain the bound.

Note that j ~ΨðnÞ
0 ð1Þi is obtained by evolving j ~ΨðnÞ

0 ð0Þi
through Eq. (5) during unit time. By performing the

Trotter expansion, one realizes that only GðnÞ
j ðλÞ’s with

a0j ≥ r can affect the entanglement entropy. By using the
small incremental entangling theorem, we find that

SðρðnÞA Þ − Sðρðn−1ÞA Þ
≤ ce

X
j≥r=a0

jjGðnÞ
j ðλÞjj∞ðnumber of spins inBj

nÞ

≤ ceg0
X
j≥r=a0

n0vDaD0 j
D

ðj − l0 − k0Þ4D

≤ ceg0n0vDaD0

Z
∞

r=a0

ðx − 1ÞD
ðx − 1 − l0 − k0Þ4D

dx:

It thus follows that the summation on the right-hand side of
Eq. (4) is bounded by

Z
∞

r0

dr
Z

∞

r=a0

dxn0vDDðR0 þ rÞD−1

× ceg0n0vDaD0
ðx − 1ÞD

ðx − 1 − l0 − k0Þ4D
;

which is OðRD−1
0 Þ (note that r0=a0 > 1þ l0 þ k0). cj in

Eq. (2) can be obtained by expanding this integral and
Eq. (3), which completes the proof of the theorem.
As a final remark, we note that our approach in its current

form is not applicable to topologically ordered systems in

(a) (b)

FIG. 3. (a) Energy spectrum of HðnÞ
s ðλÞ. (b) By adding a

coupling term, the ground state degeneracy is lifted.

PRL 113, 197204 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 NOVEMBER 2014

197204-4



general as our inherent physical setting based on an open
boundary condition and nondegenerate ground states is not
compatible with the nontrivial topology of the space and
the topological degeneracy, which are the essential attrib-
utes of topological quantum phases [4,5]. For such systems
governed by frustration-free Hamiltonians, the local topo-
logical quantum order, if it exists, leads to the area law [21].
The general proof without such restrictions is, however, yet
to be given.
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