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We study the Mott transition from a metal to cluster Mott insulators in the 1=4- and 1=8-filled pyrochlore
lattice systems. It is shown that such Mott transitions can arise due to charge localization in clusters or in
tetrahedron units, driven by the nearest-neighbor repulsive interaction. The resulting cluster Mott insulator
is a quantum spin liquid with a spinon Fermi surface, but at the same time a novel fractionalized charge
liquid with charge excitations carrying half the electron charge. There exist two emergent U(1) gauge fields
or “photons” that mediate interactions between spinons and charge excitations, and between fractionalized
charge excitations themselves, respectively. In particular, it is suggested that the emergent photons
associated with the fractionalized charge excitations can be measured in x-ray scattering experiments.
Various other experimental signatures of the exotic cluster Mott insulator are discussed in light of candidate
materials with partially filled bands on the pyrochlore lattice.
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In Mott insulators, strong correlation causes the charge
localization [1]. As the charge excitation gap becomes
smaller near the insulator-metal transition, the strong local
charge fluctuations can generate significant long-range and/
or ring exchange spin interactions. It has been recognized
that these interactions may stabilize the so-called quantum
spin liquid (QSL) [2,3], where there exist charge-neutral
spin-1=2 excitations or spinons while spinless charge
excitations are gapped [4]. In particular, when the transition
from a metal to the spin liquid is continuous, the resulting
spin liquid may form a Fermi surface of the spinons. In the
study of a Hubbard model at the 1

2
filling for the 2D

triangular and 3D hyperkagome lattices [5–7], this new
type of Mott transition is shown to occur as one increases
the on-site Hubbard interaction. On the experimental front,
such transitions can be of relevance to QSL candidate
materials such as the 2D triangular lattice organic com-
pound κ-ðETÞ2Cu2ðCNÞ3 [8] and the 3D hyperkagome
material Na4Ir3O8 [9]. In this spin liquid state, the spinons
are interacting with an emergent U(1) gauge field or
“photon”; hence, it is called the U(1) QSL [2,3,5–7,10].
On the other hand, the charge excitations behave trivially
and are simply localized on the lattice sites forming a
charge “solid” with gapped charge qe excitations. One may
wonder whether it is possible to have a Mott insulator
where the charge physics becomes nontrivial in addition to
the spin sector.
In this Letter, we study Mott insulators and Mott

transitions in partially filled pyrochlore lattice systems.
We uncover a novel cluster Mott insulator (CMI), where the
electrons are localized within the tetrahedral clusters rather
than on lattice sites. An example of a CMI on the kagome
lattice has recently been discovered in LiZn2Mo3O8 and

studied by us theoretically [11,12]. The ground state of the
CMI on the pyrochlore lattice is shown to be a quantum
spin liquid where there exist fractionalized charge excita-
tions in addition to gapped spinons, and two kinds of
emergent gauge photons. Although the notion of charge
fractionalization has been proposed in certain classically
degenerate systems [13], the charge fractionalization dis-
cussed in this Letter is fundamentally different and is an
intrinsic quantum effect. Besides the fundamental interest,
this problem is of interest from the experimental point of
view. Pyrochlore lattice systems with partially filled bands
occur in various materials with mixed-valence magnetic
ions [14–17]. The model and underlying physics discussed
in our work would potentially be relevant to such systems.
We focus on a single-band Hubbard model,

H ¼ −t
X
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ðc†iσcjσ þ H:c:Þ − μ
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ninj þ
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where c†iσ (ciσ) is the electron creation (annihilation)
operator at site i with spin σ and ni (ni ¼

P
σniσ) is the

electron number operator. We consider 1
4
- and 1

8
-filled cases.

Throughout this Letter, we assume that the on-site Hubbard
U is the biggest energy scale. Notice, however, that the
interaction U cannot cause electron localization for a
partially filled band. It is the nearest-neighbor repulsion
V that drives the charge localization and the formation
of Mott insulators. Similarly to the 1

2
-filled case, the spin

sector may form a QSL with a spinon Fermi surface for
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sufficiently large V. In contrast to the 1
2
-filled case, however,

the electrons in the Mott regime are localized on tetrahedral
clusters with two (one) electrons per tetrahedron in the
1
4
(1
8
)-filled case. In the classical V ¼ ∞ limit, the electron

site-occupation configurations of this CMI are highly
degenerate [18]. This is analogous to the degenerate
ground-state manifold in the classical spin ice [19]
(1
2
-magnetization plateau state [20]) for the 1

4
(1
8
)-filled case.

It is shown that, at finite V, the charge sector supports an
additional emergent U(1) gauge field and fractionalization
of charge quantum number in analogy to the quantum spin
ice or 1

2
-magnetization plateau state. Therefore, the charge

sector of the CMI is a U(1) fractionalized charge liquid
(FCL). We show that the electron in this CMI fractionalizes
into a fermionic spinon and two charge bosons that carry
half the electron charge. The transition to a Fermi liquid
metal occurs when the fractionally-charged bosons con-
dense. We also discuss thermodynamic and spectrascopic
properties of this novel Mott insulating phase.
Weak Mott regime for 1

4
filling. We start with the 1

4
filled

case. The model has a Fermi liquid ground state for V ≪ t
[21] and a Mott insulating ground state for V ≫ t. To study
the Mott transition of this Hubbard model, we first
introduce the usual slave rotor formalism [3,22] and
express the electron operator as c†iσ ¼ eiθif†iσ, where eiθi
is the bosonic rotor operator carrying electric charge qe and
f†iσ is the charge-neutral fermionic spinon operator. To
preserve the physical Hilbert space, we impose the gauge
constraint Lz

i ¼ ðPσf
†
iσfiσÞ − 1

2
, where Lz

i is the conjugate
operator of θj with ½θi; Lz

j� ¼ iδij. Via a decoupling of the
electron hopping term, the original Hubbard model is
reduced to two coupled Hamiltonian Hsp and Hch for
the spin and charge sectors, respectively,

Hsp ¼ −
X
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Here, teffij ¼ theiθi−iθji≡ jteffij jeiaij , Jeffij ¼ t
P

σhf†iσfjσi≡
jJeffij je−iaij and hi is the Lagrange multiplier that imposes
the Hilbert space constraint. With this reformulation of the
Hubbard model, the Hamiltonians Hsp and Hch are now
invariant under an internal U(1) gauge transformation
f†iσ → f†iσe

−iχi , θi → θi þ χi and aij → aij þ χi − χj.
This internal U(1) gauge structure will be referred as
Uð1Þsp in the following.
In the 1

2
filled case, the electrons are localized on the

lattice sites in the Mott insulator. In the slave rotor

formulation, the QSL Mott insulator corresponds to the
deconfined phase of the Uð1Þsp gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor [3,22]. The situation for 1

4
filling is somewhat different, even though the spin sector
behaves similarly and forms a Uð1Þsp QSL with a spinon
Fermi surface in the Mott regime. For the charge sector, the
strong inter-site repulsion ðV=2ÞPtetð

P
i∈tetL

z
i Þ2 þ const

(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads to
charge localization on the cluster. Hence, the total charge
number on each tetrahedra is constrained to be two,
or equivalently, satisfies the charge ice constraintP

i∈tetL
z
i ¼ 0, which is reminiscent of the spin ice con-

straint in the classical spin ice [19,23–27]. Similarly to the
classical spin ice [19], the classical charge ice configura-
tions in the infinite V limit are macroscopically degenerate
[13,18]. These features drastically modify the charge sector
physics.
We now adopt a self-consistent mean-field approach and

assume a uniform slave-rotor mean-field solution such that
teffij ≡ teff , Jeffij ≡ Jeff , and hi ≡ h. In the CMI, the rotor
hopping Jeff introduces quantum fluctuations and lifts the
extensive charge ice degeneracy, which is captured by a
standard perturbative treatment of Jeff . We preserve the
charge ice constraint in the ground state and obtain an
effective ring rotor hopping model from the third-order
degenerate perturbation theory,

Hch;eff ¼ −Jring
X

hexagon

cosðθ1 − θ2 þ θ3 − θ4 þ θ5 − θ6Þ

þU
2

X

i

ðLz
i Þ2; ð4Þ

where Jring ¼ 24ðJeffÞ3=V2 is the ring rotor-hopping ampli-
tude around a hexagon plaquette [see Fig. 1(a)]. This low-
energy effective model acts on the charge ice manifold and
is analogous to the one obtained in the context of the
quantum spin ice in the XXZ model [26] on the pyrochlore
lattice except that we have a large and finite interaction U
and Lz can take the values of � 1

2
and 3

2
at the lattice length

scale. Despite these small differences, the current model
does share the same internal symmetries as the quantum
spin ice models and thus the universal properties of our
model Hch;eff is identical to the quantum spin ice in the low
energy limit with Lz ¼ � 1

2
. Therefore, the ground state of

the charge sector is a U(1) quantum charge ice. The low
energy U(1) gauge structure is obtained by introducing
lattice electric field Lz

i ∼ Err0 and lattice vector potential
eiθi ∼ eiArr0 , where rðr0Þ lies on the AðBÞ diamond sublattice
[Fig. 1(c)] and Err0 ¼ −Er0r, Arr0 ¼ −Ar0r. To distinguish it
from the Uð1Þsp gauge field, we label this as Uð1Þch gauge
field for the charge sector. The CMI is in the deconfined
phase of this compact Uð1Þch gauge theory and we expect a
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gapless and linearly dispersing Uð1Þch gauge photon to
appear at low energies.
Beyond the low energy regime, the rotor operator eiθi

creates a gapped charge-qe excitation that violates the
charge ice constraints on the two neighboring tetrahedra
centered at r and r0. Just like the spin-1

2
bosonic spinon

excitations in quantum spin ice, this defect charge-qe
excitation can be separated into two deconfined charge
bosons (Φ†) in arbitrary distances, each carrying half the
electron charge. Therefore, the quantum charge ice state is a
U(1) fractionalized charge liquid (FCL). As shown in
Table. I, these two fractionally charged bosons also carry
the Uð1Þsp gauge charge (Qsp) and Uð1Þch gauge charge
(Qch). Here the Uð1Þsp gauge charge is defined on the

pyrochlore lattice site as Qsp
i ¼ P

σf
†
iσfiσ − Lz

i and the
local Uð1Þch gauge charge is defined on the dual diamond
lattice site [see Fig. 1(c)] as Qch

r ¼ ηr
P

μL
z
r;rþηreμ where

ηr ¼ þ1ð−1Þ for r on the A(B) sublattice of the dual
diamond lattice and eμ are the four nearest-neighbor vectors
from the A sublattice sites [see Fig. 1(c)]. The charge-qe=2
bosons are fully gapped in the Mott insulator. As the
electron hopping t increases, the charge excitation gap
becomes smaller and the charged bosons condense upon
closing the gap. The condensation of charge-qe=2 bosons
would make the two internal gauge fields [Uð1Þsp and
Uð1Þch] massive simultaneously, and drives a phase tran-
sition to a Fermi liquid metal [see Fig. 1(e)]. Therefore,
there are only two phases in the phase diagram [see
Fig. 1(e)], which is consistent with the quantum
Monte Carlo simulation results for an interacting hardcore
bosonmodel at the half-filling on the pyrochlore lattice [28].
In order to clearly represent both the Uð1Þch gauge

structure and charge fractionalization, and to study the
boson condensation transition for the charge sectorHch, we
employ the parton-gauge construction that was recently
applied to the quantum spin ice [27,29–31]. We include
both the fractionalized charge bosons and a gauge field in
the rotor variable as eiθi ¼ Φ†

rΦr0l
þ
rr0 , L

z
i ¼ lzrr0 , where the

pyrochlore lattice site i ¼ rþ ðeμ=2Þ is the midpoint of the
link ðrr0Þ on the dual diamond lattice and rðr0 ¼ rþ eμÞ
belongs to the AðBÞ diamond sublattice. Here, lzrr0 ≡ Err0

and l�rr0 ≡ Δrr0e�iArr0 (Δrr0 ≡ jl�rr0 j) represent the lattice
Uð1Þch gauge fields on the links of the dual diamond
lattice. To constrain the enlarged Hilbert space, we need
½Φr; Qch

r � ¼ Φr and ½Φ†
r ; Qch

r � ¼ −Φ†
r . Now it is clear that

the electron in the CMI fractionalizes into two charge-qe=2
bosons and a fermionic spinon [with an open string
operator lþr;rþeμ connecting two bosons; see Fig. 1(d)],

c†
rþeμ

2
;σ
¼ f†

rþeμ
2
;σ
Φ†

rΦrþeμl
þ
r;rþeμ ; ð5Þ

where r ∈ A sublattice. With the above construction, the
charge sector Hamiltonian can be written as

FIG. 1 (color online). The ring hopping processes of charge
rotors around a hexagon in the CMI, for the 1

4
- and 1

8
-filled cases

shown in (a) and (b) . As shown in (c) , r and r0 are located on the
center of the tetrahedra and form a dual diamond lattice. We use
r; r0 (i; j) to label the diamond (pyrochlore) lattice sites. In
(c), r ∈ A diamond sublattice and eμ are four vectors connecting
A sublattice sites to the four neighboring B sublattice sites. In (d) ,
the electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4
- or 1

8
-filling is plotted

in (e) . Here, ðV=tÞc ¼ 1.65ð0.98Þ for the 1
4
(1
8
)-filling in the mean-

field theory. There are only two phases: a Fermi liquid metal and
a CMI (FCL/QSL).

TABLE I. Different kinds of gauge charges carried by various
excitations. Qem, Qsp, and Qch refer to the electric charge, Uð1Þsp
gauge charge, and Uð1Þch gauge charge, respectively. qe is the
charge of the electron.

Operator Qem Qsp Qch

c†iσ qe 0 0

f†iσ 0 1 0

eiθi qe −1 0
Φ†

r , r ∈ A qe=2 −1=2 1

Φ†
r , r ∈ B −qe=2 1=2 1
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Hch ¼ −Jeff
X

r;μ≠ν
Φ†

rþηreμΦrþηreνl
−ηr
r;rþηreμl

þηr
r;rþηreν

þ V
2

X

r

ðQch
r Þ2; ð6Þ

where we have dropped the linear Lz term because of the
emergent particle-hole symmetry at the Mott transition. The
above charge Hamiltonian describes the minimal coupling
of the fractionally charged bosons with the emergent
Uð1Þch gauge field on the dual diamond lattice. Within
the gauge mean-field approximation [27], we show that the
Mott transition occurs at ðV=JeffÞc ≈ 5.21, where the
charge bosons develop an energy gap. In this calculation,
we have treated Lz and lz as spin-1

2
variables, which is a

good approximation since double occupancy (or Lz ¼ 3
2
)

configuration is strongly suppressed by the large on-site
interaction U. Together with the self-consistent mean-field
theory for Hsp, we obtain a continuous Mott transition at
ðV=tÞc ≈ 1.65 [see Fig. 1(e)].
Weak Mott regime for 1

8
filling. For the CMI with 1

8

electron filling, the main difference is that the electron
occupation number per tetrahedron is 1, i.e.,

P
i∈tetL

z
i ¼

−1. The low energy model of the charge sector is then
obtained through the ring hopping processes of the rotors
around a hexagon [see Fig. 1(b)]. In the end, the charge
occupation-number constraint and the low energy model
are identical to the 1

2
-magnetization plateau state of a spin-1

2

XXZ model on the pyrochlore lattice in a uniform magnetic
field [20]. It is known that the 1

2
-magnetization plateau state

is a U(1) QSL with the same universal properties as the
quantum spin ice [20]. Therefore, the charge sector for the
1
8
-filled case is also a Uð1Þch FCL with the same low energy
excitations as the 1

4
-filled case.

Strong Mott regime. Here we turn to the strong Mott
regime with V ≫ t. Let us start with the CMI at the
1
8
-filling, where the electrons on neighboring tetrahedra
are always separated by one unoccupied site [see Fig. 1(b)].
The dominant interaction arises from the ring hopping
processes of the three electrons on the hexagon and is
described by

Heff ¼ −Jering
X

hexagon

X

αβγ

ðc†1αc2αc†3βc4βc†5γc6γ

þ c†1αc6αc
†
5βc4βc

†
3γc2γ þ H:c:Þ; ð7Þ

where Jering ¼ ð6t3=V2Þ is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq. (7) cannot be cast into the usual form of pairwise
spin interactions or ring exchange, which is an important
difference between the CMIs and conventional magnets.

In conventional magnets, the spin moment can be consid-
ered as being coupled to a mean magnetic field generated
by the exchange interactions from neighboring spins and if
this mean magnetic field does not fluctuate strongly, the
spin tends to align with this field and develop magnetic
ordering. For the CMI here, such a mean magnetic field
cannot be defined from the interaction in Eq. (7) and thus
we do not expect simple magnetic ordering. Then, for the
spin sector, we may expect the QSL from the weak Mott
regime to remain in the strong Mott regime. For the charge
sector, we note that the effect of Eq. (7) on the charge
excitations is identical to the charge rotor hopping proc-
esses in Eq. (4). Following the same reasoning as presented
for the weak Mott regime, we expect the same Uð1Þch FCL
to arise in the strongMott regime. In other words, the quasi-
itinerancy nature of the electrons inside the FCL helps the
spin quantum numbers to freely propagate, which prevents
simple magnetic ordering and may stabilize a QSL state.
This quasi-itinerancy would be a new mechanism to
stabilize quantum spin liquid phases, in addition to the
known mechanisms such as geometric frustration, low-
dimensionality, and the proximity to Mott transitions.
In the strong Mott regime for the 1

4
-filling, there exists

a superexchange spin-spin interaction between nearest
neighbor sites with the exchange coupling Jex ¼
4t2=ðU − VÞ þ 8t3=V2. Since this energy scale Jex is larger
than or comparable to the electron ring hopping amplitude
Jering, the FCL/QSL may survive or be destabilized depend-
ing on different parameter regimes [32].
Discussion. We now discuss the experimental signatures

related to these exotic CMIs. We begin with the principal
physical properties in the vicinity of the Mott transition.
The Mott transition is continuous in the mean-field theory,
but might turn to a weakly first order transition upon
including Uð1Þch gauge fluctuations [33]. Even in that case,
the first-order effect may be important only at extremely
low temperatures. So for a rather wide temperature range,
the physics near the Mott transition is controlled by the
critical fractionalized charge bosons coupled to the Uð1Þch
and Uð1Þsp gauge fields, and the fermionic spinons coupled
to the Uð1Þsp gauge field. Similarly to the half-filled case
studied earlier [7], the dynamical critical exponent for the
charge boson [fermionic spinon with Uð1Þsp] is z ¼ 1

(z ¼ 3). Hence we expect two crossover temperature scales
for specific heat and electric resistivity, respectively. Due to
further fractionalization of charge excitations, the tunneling
density of states at the transition would be highly sup-
pressed as Ncrit

tunnðωÞ ∼ ω4 instead of ω2 as in the half-filled
case [7].
The low energy Uð1Þch gauge field originates from

the electron charge fluctuations and may be probed by
elastic and/or inelastic x-ray scattering. Similarly to the
spin structure factor in the quantum spin ice [26–28,34],
the inelastic charge structure factor of the CMI at low
energies can be regarded as the emergent “electric-field”
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correlator and is given by Im½Eα
−k;−ωE

β
k;ω� ∝ ½δαβ − ðkαkβ=

k2Þ�ωδðω − vjkjÞ, where Erþ1
2
eμ ≡ Lz

r;rþeμðeμ=jeμjÞ ¼
ðnrþ1

2
eμ −

1
2
Þðeμ=jeμjÞ and r ∈ A diamond sublattice.

Here v is the speed of the Uð1Þch gauge photon.
The CMI is expected to lose the quantum coherence

around a temperature T� ∼max½Jering; Jex� in the Mott
regime. In the temperature range T� ≲ T ≲ V, the cluster
electron occupation-number constraint still holds and the
system is described by a thermal charge liquid, where
degenerate charge configurations are equally allowed.
Similarly to the classical spin ice [19], the equal-time
charge structure factor is given by hEα

−kE
β
ki ∝

δαβ − ðkαkβ=k2Þ, which leads to the pinch point structures
in the k space [19,23–25].
There exist several candidate materials for 1

4
- or

1
8
-filled pyrochlore lattice systems. Various spinels such
as LiV2O4 (with V3.5þ∶d1.5) [14], CuIr2S4 (with
Ir3.5þ∶d5.5) [17] and GaTa4Se8 (with Ta3.25þ∶d1.75) [15]
may be good candidates for 1

4
- and 1

8
-filling cases. The

β-pyrochlore system CsW2O6 (with W5.5þ∶d0.5) [16] may
also be a promising system where the physics discussed
here can be explored.
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