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Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been
searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or
quantum spin liquids. Here, we explore the magnetism of γ-Li2IrO3, which has the topology of a three-
dimensional Kitaev lattice of interconnected Ir honeycombs. Using magnetic resonant x-ray diffraction, we
find a complex, yet highly symmetric incommensurate magnetic structure with noncoplanar and
counterrotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts
for all key features of the observed magnetic structure. Our results provide strong evidence that γ-Li2IrO3

realizes a spin Hamiltonian with dominant Kitaev interactions.
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Magnetic materials with bond-dependent anisotropic
interactions are candidates to display novel forms of
magnetic order or quantum spin liquid states, as exempli-
fied by the Kitaev model on the honeycomb lattice [1].
Here, all spins interact via nearest-neighbor Ising
exchanges, but a different Ising axis (x; y; z) applies for
the three different bonds emerging out of each lattice site.
This leads to strong frustration effects that stabilize a novel,
gapless quantum spin liquid state with exotic excitations
(Majorana fermions), an exactly solvable quantum spin
model. It was theoretically proposed [2] that such exotic
Hamiltonians might be realized in magnetic materials
containing edge-sharing cubic IrO6 octahedra. The mag-
netic ground state of Ir4þ including the cubic crystal
field and spin-orbit coupling is a spin-orbital doublet with
Jeff ¼ 1=2 [3], and superexchange through the two 90°
Ir-O-Ir paths is expected to lead to a dominant Ising
interaction for the moment components normal to the
Ir-O2-Ir plane [2]. For a threefold coordinated IrO6 octa-
hedron, this leads to perpendicular Ising axes for the three
nearest-neighbor bonds, as required for a Kitaev model.
The two-dimensional (2D) honeycomb-lattice α-Na2IrO3

[4–8] and α-Li2IrO3 [9,10] are being intensively explored
as candidate Kitaev materials, but as yet no clear evidence
for novel Kitaev physics has been observed.
Generalizations of the Kitaev model to 3D lattices, the

harmonic honeycombs, are also expected to have quantum
spin liquid states [11–13]. The recently-synthesized struc-
tural polytypes “hyperhoneycomb” β-Li2IrO3 [14] and
“stripyhoneycomb” γ-Li2IrO3 [15], which correspond to
the N ¼ 0 and N ¼ 1, respectively, of the harmonic honey-
comb series, maintain the local three-fold coordination of
edge-sharing IrO6 octahedra and therefore are prime

candidates to display 3D Kitaev physics. To test for
signatures of such physics, we have performed magnetic
resonant x-ray diffraction (MRXD) measurements [16] on
single crystals of γ-Li2IrO3, scattering at the strong Ir L3

resonance [5]. We have determined the complete magnetic
structure for all 16 iridium sites in the unit cell and found an
unexpectedly complex, yet highly symmetric magnetic
structure comprised of noncoplanar, counterrotating iridium
magnetic moments located in zigzag chains. Remarkably,
the magnetic structure exhibits no net ferromagnetic or
antiferromagnetic spin correlations, and as such one can
rule out a model Hamiltonian whose primary ingredient is
the nearest-neighbor Heisenberg interaction. Instead, moti-
vated by the work of Jackeli and Khaliullin [17] and by
arguments based on susceptibility anisotropy [13,15], we
present a minimal spin Hamiltonian with dominant Kitaev
interactions that naturally reproduces all key features of the
observed magnetic order. In particular, we point out that
counterrotations of moments on the zigzag chains are
naturally stabilized by Kitaev interactions. Our results
therefore provide strong evidence that dominant Kitaev
couplings govern the magnetism of γ-Li2IrO3.
The MRXD experiments were performed using the I16

beam line at Diamond (see the Supplemental Material [18]
for details). Systematic searches along high-symmetry
directions in reciprocal space revealed that at low temper-
atures new magnetic Bragg peaks appeared at satellite
positions of reciprocal lattice points with an incommensu-
rate propagation vector q ¼ ð0.57ð1Þ; 0; 0Þ [19]. The sat-
ellite peaks were found to be as sharp as structural peaks in
all three reciprocal space directions, as illustrated for the
ð0; 0; 16Þ þ q reflection in Fig. 1(a), indicating coherent,
3D magnetic ordering. The peaks disappeared upon heating
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[Fig. 1(a), open circles], and the temperature dependence of
the intensity had a typical order parameter behavior [see
Fig. 1(b)]. The absolute temperature values have been
corrected for beam-heating effects through a calibration
against specific heat measurements on the same sample,
shown in Fig. 1(b) inset, which give TN ¼ 39.5 K.
The magnetic origin of the satellite reflections was

further confirmed by analyzing the polarization of the
scattered beam. Figure 1(c) shows that the peak at
ð0; 0; 16Þ þ q appeared only in the σ-π0 channel (filled
circles) and is absent in the σ-σ0 channel (open circles), as

expected for resonant diffraction that is of pure magnetic
origin [16]. An energy scan performed while centered on
the magnetic peak [Fig. 1(d)] showed a large resonant
enhancement of the scattered intensity, again as expected
for MRXD. The energy dependence is in stark contrast to
that characteristic of a nearby structural peak (dotted line).
Furthermore, the obtained resonance energy is similar to
values found in other iridates [5,20] and agrees well with
the edge of the measured fluorescence signal from the
sample [solid line in Fig. 1(d)].
In total, over 30 magnetic Bragg peaks were observed,

and those measured in the (h0l) plane are labeled in
Fig. 2(b). A representative scan along the (h; 0; 24) direc-
tion is plotted in Fig. 2(a), which shows strong structural
Bragg peaks centered at h ¼ 0; 4, a multiple-scattering
signal centered at h ¼ 2, and four magnetic Bragg peaks
symmetrically displaced away from the above reflections.
The scan illustrates the highly symmetric nature of the
magnetic peak intensities and that q is distinctly different
from the commensurate wave vector (1

2
00).

The magnetic iridium ions are located on two inequi-
valent sublattices in the orthorhombic unit cell, referred to

FIG. 1 (color online). Magnetic Bragg peak at ð0; 0; 16Þ þ q.
(a) Scans along orthogonal directions in reciprocal space [filled
(open) symbols at base temperature (above TN)]. Dashed lines are
fits to a Gaussian shape. (b) Temperature dependence of the
integrated magnetic peak intensity (solid line is guide to the eye,
temperature values are corrected for beam heating effects, see
text). Inset: specific heat data showing an anomaly at the onset of
magnetic order. (c) Scans with a polarizer in the scattered beam:
the magnetic signal is present only in the σ-π0 channel (filled
circles) and disappears in the σ-σ0 (open circles) dominated by
charge scattering (intensity scaled by 1=10). (d) Energy scan
through the magnetic peak (blue squares) and a structural Bragg
peak (0,0,16) (dotted line, scaled by 1=104) as well as the
fluorescence scan (solid line).

FIG. 2 (color online). (a) Scan along the (h; 0; 24) direction
observing structural peaks at h ¼ 0; 4 (intensity scaled by 1=104

for clarity), a multiple-scattering signal centered at h ¼ 2, and
magnetic peaks at h ¼ 0þ q, 2� q, 4 − q. Solid red line is the
calculated magnetic scattering intensity [21] for the magnetic
structure model depicted in Fig. 4. (b) (h0l) reciprocal plane with
filled circles, diamonds, and red crosses indicating positions of
structural peaks, measured magnetic peaks, and the absence of
peaks, respectively. Lattice points are also labeled by the
magnetic basis vectors that have finite structure factor for
magnetic peaks at satellite �q positions.
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as Ir and Ir0, respectively (light and dark balls in Fig. 4).
Each sublattice contains four sites in the primitive cell
labeled 1 to 4 and 10 to 40, respectively. For a propagation
vector q ¼ ðq; 0; 0Þ, symmetry analysis [22] gives four
types of magnetic basis vectors for each of the two
sublattices: þþþþ ðFÞ, þþ − − ðCÞ, þ − −þ ðAÞ,
and þ −þ − ðGÞ where the � signs denote a symmetry-
imposed relation between the magnetic Fourier compo-
nents at the sites 1–4 and 10–40.
Each of the four types of basis vectors has its own

selection rules for a nonzero structure factor, so their
presence can be directly confirmed from the observation
of magnetic reflections at certain positions, and in some
cases one can also identify the phase relation between the
two sublattices. For example, all magnetic peaks along the
(h; 0; 24) line in Fig. 2(a) can be uniquely assigned to
scattering from F-type basis vectors. Satellites at h ¼ 0þ q
and 4 − q arise from components that are equal in magni-
tude and in phase on the two sublattices, (F, F) in short-
hand notation, whereas the satellites at h ¼ 2� q originate
from scattering by components equal in magnitude, but
with opposite sign on the two sublattices, i.e., (F, −F) (see
the Supplemental Material [18] for details). The overall
selection rules for magnetic scattering are illustrated in
Fig. 2(b). We have ruled out the presence of both C and G
basis vectors as systematic searches (at four different
azimuth angles) at the satellite positions ð0; 0; 23Þ þ q
and ð2; 0; 23Þ − q (red crosses) gave no sign of a magnetic
signal. Furthermore, the observation of an AG magnetic
peak at ð1; 1; 21Þ − q, G being ruled out, confirms the
presence of an A basis vector [azimuth scan in Fig. 3(a)].
The polarization dependence of the MRXD intensity

allows a direct identification of the orientation of the
magnetic moments. For a σ-polarized incident beam, only
the projection of the magnetic moments along the scattered
beam direction k̂0 contributes to the diffraction intensity
[16]. By rotating the sample around the scattering vector
Q ¼ k0 − k by the azimuth angle Ψ [see diagram in
Fig. 3(a) inset], the projection of the magnetic moments
onto k̂0 changes, giving a clear signature of the moment
direction. We have measured the azimuth dependence for
three magnetic peaks close to the sample surface normal,
such that the Ψ rotation is almost around (001). The origin
Ψ ¼ 0 is defined as when the (010) direction is in the
scattering plane and pointing away from the source.
Figure 3(a) shows the azimuth scan for a pure-A magnetic
Bragg peak. The intensity drops to zero at Ψ ¼ 0° and 180°
and has maxima at �90°, uniquely identifying that scatter-
ing comes from magnetic moment components along x
(here x, y, z are along the orthorhombic a, b, c axes and
scattering from y-and z-moment components, blue and
green lines, respectively, has been calculated for compari-
son), hence, identifying basis vector components in the
combination ðA;�AÞx, where the two sublattices are
assumed to have equal magnitude moments. Similarly,

the azimuth of the pure-F peak in Fig. 3(b) originates from
y components antiparallel on the two sublattices, identify-
ing the basis vector ðF;−FÞy. Figure 3(c) shows the
azimuthal dependence for a mixed FA peak, which
uniquely identifies it as coming from basis vector compo-
nents π=2 out of phase in the combination iðA;−AÞx,
ðF;FÞz. We note that this combination of relative phases
between the x and z components on all the iridium sites is
unique, where other combinations can be qualitatively
ruled out (see blue and green curves in the same figure).
The observed phase combination describes counterrotating
moments between consecutive sites along c (curly arrows
in Fig. 4), which form counterrotating zigzag chains
along a.

FIG. 3 (color online). Integrated intensity as a function of
azimuth for three magnetic Bragg peaks (a) pure Ax, (b) pure Fy,
and (c) mixed FzAx. Top diagram illustrates the scattering
geometry. Data points (filled circles) are integrated peak inten-
sities from rocking curve scans corrected for absorption and
Lorentz factor. Thick (red) lines show fits that include all
contributions to the MRXD structure factor [16,21] from the
magnetic structure model iðA;−AÞx, −iðF;−FÞy, ðF;FÞz, de-
picted in Fig. 4. Blue and green curves in (a) and (c) illustrate that
other phase combinations of basis vectors are ruled out.
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To determine the relative magnitudes of the magnetic
moment components, we performed a simultaneous fit to
the magnetic scattering intensities in the three azimuth
scans in Fig. 3 with four free parameters: the magnitudes of
the moment amplitudes Mx and My relative to Mz, an
overall intensity scale factor for the ð1; 1; 21Þ − q and
ð2; 0; 24Þ − q peaks, and a separate intensity scale factor
for the ð0; 0; 16Þ þ q peak (which was measured on the
same sample, but in a different experiment). The fit is
shown by the red solid lines in Figs. 3(a)–3(c) and
gave values for the moment magnitude ratios
Mx∶My∶Mz ¼ 0.65ð4Þ∶0.58ð1Þ∶1. We note that this also
quantitatively reproduces the observed ratio of the mag-
netic peak intensities in Fig. 2(a) (red line).
Imposing the constraint of near-constant magnitude

moment at every site requires the phase offset between
the x and y components to be π or 0, giving the basis vector
combination iðA;−AÞx, ið−1ÞmðF;−FÞy, ðF;FÞz, with
m ¼ 1 or 2. Both give similar structures, and we plot in
Fig. 4 the case m ¼ 1. The moments are confined to rotate
in one of two planes, obtained from the (ac) plane by
rotation around the c axis by an angle �ϕ, with
ϕ ¼ tan−1ðMy=MxÞ ¼ 42ð2Þ°. The pattern is such that
neighboring iridium zigzag chains have alternate orienta-
tions of the moment rotation plane as indicated by the light

and dark shaded envelopes in Fig. 4. The m ¼ 2 case
simply gives the opposite alternation of the rotation planes.
A key feature of the magnetic structure is the counter-

rotation of neighboring moments. On two such sites, say 1
and 10, the spins projected onto the ac plane are
S1;10 ðrÞ ¼ ĉhSci cos q · r� âhSai sin q · r. We now rotate
from the crystallographic a; b; c axes to the Kitaev axes
denoted by sans serif symbols x; y; z (see Fig. 4 caption)
and consider the correlation between the Sx spin compo-
nents Sx1S

x
10 across an x-type bond, or Sy1S

y
10 across a

y-type bond. The net averaged correlation is finite,
hSx1Sx10 ix ¼ hSy1Sy10 iy ¼ hSaihSci 1

2
sinðπq=2Þ. We see that

along each x-type bond the spins are aligned when they
point along x, and anti-aligned when they point along y,
and similarly for y-type bonds. Thus, Kitaev interactions
can stabilize the counterrotating moments with a propaga-
tion vector q along a. Therefore, we construct the following
Kitaev-Heisenberg Hamiltonian as a minimal model

H ¼
X

c bonds

½KcS
ηij
i S

ηij
j þ JcSi · Sj þ IccSci S

c
j �

þ
X

d bonds

½KdS
ηij
i S

ηij
j þ JdSi · Sj� þ

X

2ndhhijii
J2Si · Sj ð1Þ

where interactions along the vertical (along c) bonds are
denoted by the subscript c and interactions along the zigzag
(diagonal) bonds are denoted by the subscript d. Kc and Kd
are the Kitaev interactions along c bonds (of type ηij ¼ z)
and d bonds (of type ηij ¼ x or y), respectively. To prevent
(0; 0; qc) instabilities, we have introduced an Ising coupling
Icc of the Sc spin components and, finally, a Heisenberg
coupling J2 between second-nearest neighbors. We take the
following values for the parameters (in units of meV):
Kc ¼ −15, Kd ¼ −12, Jc ¼ 5, Jd ¼ 2.5, Icc ¼ −4.5, J2 ¼
−0.9 (Supplemental Material [18]), where the overall scale
was set such as to have the calculated ordering transition
temperature agree with the experimental value.
The Hamiltonian was analyzed in Fourier space using

the Luttinger-Tisza approximation (Supplemental Material
[18]). This gave the lowest-energy mode identical to the
(Sa, Sc) coplanar projection of the magnetic structure in
Fig. 4 with hSci > hSai. To obtain fixed-length spins
requires mixing with another mode, and the lowest-energy
mode available at the same wave vector has collinear order
of the Sb components with a pattern such that the mixed
mode exactly reproduces the observed noncoplanar struc-
ture. Furthermore, the Sb components are coaligned along
all c-axis bonds and, hence, stabilized by the large
ferromagnetic Kc Kitaev exchange. The mixing amplitude,
related to the tilt angle ϕ, is fixed for unit length spins
but changes continuously with the Hamiltonian parameters.
Decreasing the strength of the Kitaev interactions prevents
the ground state from producing unit-length spins through
this mixing mechanism, and importantly, we find that the
noncoplanar tilt angle observed in γ-Li2IrO3 requires

FIG. 4 (color online). Projection of the magnetic structure on
the (ac) plane showing 3 unit cells along the horizontal
propagation direction a. Light and dark blue arrows show the
moments on the Ir and Ir0 sublattices, with sites 1–4 and 10–40,
respectively. Curly arrows on the left side illustrate counter-
rotating magnetic order between consecutive sites along c. In unit
cell 2, light (−ϕ) and dark (þϕ) shaded elliptical envelopes
emphasize the confinement of the moments to alternate planes
obtained from the (ac) plane by a rotation by ∓ϕ around c. In
unit cell 3, the color of bonds indicates the anisotropy axis of the
Kitaev exchanges in Eq. (1), with η ¼ x; y; z for black/green/red
bonds, where x̂ ¼ ðâþ ĉÞ= ffiffiffi

2
p

, ŷ ¼ ðâ − ĉÞ= ffiffiffi
2

p
and ẑ ¼ b̂ [15]).
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relatively large Kitaev exchanges within the minimal
model.
To summarize, through MRXD measurements on

γ-Li2IrO3 single crystals, we have observed an incommen-
surate, noncoplanar magnetic structure with counterrotating
moments. A Kitaev-Heisenberg Hamiltonian can fully
explain the observed complex magnetic structure, provid-
ing strong evidence that γ-Li2IrO3 is an experimental
realization of 3D Kitaev physics in the solid state.

This work was supported by EPSRC (U.K.) under
Grants No. EP/H014934/1 and No. EP/J003557/1, and
by the U.S. Department of Energy, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division,
under Contract No. DE-AC02-05CH11231. We thank A.
Coldea for technical help with the micro-calorimeter
specific heat measurements.

[1] A. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006).
[2] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.

105, 027204 (2010).
[3] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H.

Takagi, and T. Arima, Science 323, 1329 (2009).
[4] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412

(2010).
[5] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. M. Tsvelik, Y.-J.

Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill,
Phys. Rev. B 83, 220403(R) (2011).

[6] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.
Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P.
Gegenwart, K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock,
and J. Taylor, Phys. Rev. Lett. 108, 127204 (2012).

[7] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-
Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao,
Phys. Rev. B 85, 180403(R) (2012).

[8] H. Gretarsson, J. P. Clancy, Y. Singh, P. Gegenwart, J. P.
Hill, J. Kim, M. H. Upton, A. H. Said, D. Casa, T. Gog, and
Y.-J. Kim, Phys. Rev. B 87, 220407(R) (2013).

[9] M. J. O’Malley, H. Verweij, and P. M. Woodward, J. Solid
State Chem. 181, 1803 (2008).

[10] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108,
127203 (2012).

[11] S. Mandal and N. Surendran, Phys. Rev. B 79, 024426
(2009).

[12] E. K.-H. Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim,
Phys. Rev. B 89, 045117 (2014).

[13] I. Kimchi, J. G. Analytis, and A. Vishwanath, arXiv:
1309.1171.

[14] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, and H. Takagi,
arXiv:1403.3296.

[15] K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A.
Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-Curry,
G. T. McCandless, J. Y. Chan, F. Gandara, Z. Islam, A.
Vishwanath, A. Shekhter, R. D. McDonald, and J. G.
Analytis, Nat. Commun. 5, 4203 (2014).

[16] J. P. Hill and D. F. McMorrow, Acta Crystallogr. Sect. A 52,
236 (1996).

[17] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009)

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.197201 for details
of the crystal structure, magnetic symmetry analysis, mag-
netic structure factor calculations, MRXD experimental
setup, calculations of the azimuth dependence of the MRXD
intensity, theoretical analysis of the minimal model Ham-
iltonian and the rôle of Kitaev interactions in stabilizing
counterrotation of the magnetic moments.

[19] The uncertainty in the value of q is estimated from
combining uncertainties in the crystal orientation (UB
matrix) and the I16 instrument intrinsic sphere of
uncertainty.

[20] S. Boseggia, R. Springell, H. C. Walker, H. M. Rønnow,
Ch. Rüegg, H. Okabe, M. Isobe, R. S. Perry, S. P. Collins,
and D. F. McMorrow, Phys. Rev. Lett. 110, 117207
(2013).

[21] http://forge.ill.eu/svn/magnetix.
[22] BasiReps software part of the FullProf suite, J. Rodriguez-

Carvajal, Physica (Amsterdam) 192B, 55 (1993).

PRL 113, 197201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 NOVEMBER 2014

197201-5

http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1126/science.1167106
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.83.220403
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1103/PhysRevB.87.220407
http://dx.doi.org/10.1016/j.jssc.2008.04.005
http://dx.doi.org/10.1016/j.jssc.2008.04.005
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevB.79.024426
http://dx.doi.org/10.1103/PhysRevB.79.024426
http://dx.doi.org/10.1103/PhysRevB.89.045117
http://arXiv.org/abs/1309.1171
http://arXiv.org/abs/1309.1171
http://arXiv.org/abs/1403.3296
http://dx.doi.org/10.1038/ncomms5203
http://dx.doi.org/10.1107/S0108767395012670
http://dx.doi.org/10.1107/S0108767395012670
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.197201
http://dx.doi.org/10.1103/PhysRevLett.110.117207
http://dx.doi.org/10.1103/PhysRevLett.110.117207
http://forge.ill.eu/svn/magnetix
http://forge.ill.eu/svn/magnetix
http://forge.ill.eu/svn/magnetix
http://dx.doi.org/10.1016/0921-4526(93)90108-I

