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We study the dynamics of bosonic atoms in a tilted one-dimensional optical lattice and report on the
first direct observation of density-induced tunneling. We show that the interaction affects the time evolution
of the doublon oscillation via density-induced tunneling and pinpoint its density and interaction
dependence. The experimental data for different lattice depths are in good agreement with our theoretical
model. Furthermore, resonances caused by second-order tunneling processes are studied, where the
density-induced tunneling breaks the symmetric behavior for attractive and repulsive interactions predicted
by the Hubbard model.
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TheHubbardmodel is the primary description for strongly
correlated electrons in solids. It takes into account the
interaction between the particles at a lattice site and the
tunneling between the sites, whereas other interaction
processes are neglected. It was pointed out that these addi-
tional interactions may have a crucial influence on strongly
correlatedmaterials such as superconductors or ferromagnets
[1–4]. Of particular importance is the so-called bond-charge
interaction that represents a density-induced tunneling of an
electron. In solids, this interaction-driven process cannot
be studied systematically due to the lack of direct control
over the electron density and the interaction strength.
Furthermore, the complexity of the investigated materials
hinders a direct observation of this interaction effect. Hence,
the role of interaction-induced tunneling has remained an
open question in condensed matter physics.
Ultracold atoms in optical lattices allow the realization

of extremely pure lattice systems without defects and
phononic excitations. Furthermore, the unique control of
both the lattice potential and the interaction strength
permits a systematic study of static and dynamic properties.
In optical lattices, density-induced tunneling [5–9] is
even more pronounced due to the characteristic shape of
the Wannier functions [7]. Several indications for density-
induced tunneling have been found: It has a strong
influence on the superfluid to Mott-insulator transition in
bosonic [7,10,11] and multicomponent systems such as
Bose-Fermi mixtures of atoms [6,8,12–15]. As a tunneling
process, it also modifies the effective band structure, which
has also been observed in a Bose-Fermi mixture [16].
A direct observation of density-induced tunneling proc-
esses was hindered mainly by the fact that the Mott
insulator transition depends only on the ratio of on-site
interaction and total tunneling and by the averaging over
different on-site occupancies in experimental systems.
Here, we report on the direct observation of

density-induced tunneling with ultracold atoms in a tilted

one-dimensional optical lattice. We study the dynamics of a
1DMott insulator after quenching the tilt energy E between
neighboring sites into resonance with the on-site interaction
energy U. We show that the resulting resonant particle
oscillation between neighboring sites (see inset of Fig. 1) is
driven by interaction-induced tunneling on top of conven-
tional tunneling. The experimental control over the on-site
occupancy and the interaction strength via a Feshbach
resonance [11] allows us to isolate the effect of interaction-
induced tunneling and to study it systematically.
The observed oscillation frequency f0 is expected to be

directly proportional to the tunneling matrix element J and
is plotted in Fig. 1 as a function of the atomic scattering
length as. The plot shows that the tunneling rate is modified
by the interaction strength and the density of the sample.
The Hubbard model predicts a constant value for J (dashed
lines in Fig. 1). In contrast, density-induced tunneling ΔJ

(a) (b)

FIG. 1 (color online). Oscillation frequency f0 of the doublon
number in a tilted lattice as a function of as for Vz ¼ 8ER
(diamonds), 10ER (squares), and 12ER (circles) with initial on-
site occupancy (a) n ¼ 1 and (b) n ¼ 2 (see insets). The dashed
lines show the prediction of the standard Hubbard model. The
solid lines depict the interaction dependence due to density-
induced tunneling [see Eq. (1)]. Theoretical predictions corre-
spond to a 4% lower lattice depth [17]. The experimental data of
(a) are taken from Ref. [18].
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changes linearly with as and the on-site occupancy n,
contributing to the total tunneling energy via

Jtot ¼ J þ ðni þ nj − 1ÞasΔJ; ð1Þ

for a tunneling process involving neighboring sites i and j.
The measured oscillation frequency agrees very well with
this modified tunneling rate (solid lines in Fig. 1).
Increasing the on-site occupation from n ¼ 1 to n ¼ 2
enhances the slope of the experimental data in accordance
with Eq. (1). This allows us to identify the density-induced
tunneling process unambiguously and shows that its
amplitude can even be as strong as that of conventional
tunneling.
The experiments are performed as reported in detail in

Ref. [18]. Starting from a Cs Bose-Einstein condensate, we
prepare a bosonic Mott insulator in a 3D cubic optical
lattice with a lattice depth Vq ¼ 20ER (q ¼ x; y; z), where
ER ¼ h × 1.325 kHz denotes the photon recoil energy, and
h is Planck’s constant [17]. Adjusting initial density,
interactions, and external confinement during lattice load-
ing allows us to prepare either a clean one-atom- or a two-
atom-per-site Mott shell [17]. We set as to the desired value
(−400a0 ≤ as ≤ þ400a0) by means of a Feshbach reso-
nance. Tunneling dynamics along 1D chains is initiated by
first setting the tilt E along the vertical z direction via a
magnetic force j∇Bj and then quickly lowering Vz along
the direction of the tilt. We measure the number of doubly
occupied sites (doublons) after a variable evolution time th
throughFeshbachmolecule formation anddetection [18].On
resonance (E ≈ U) the doublon number exhibits large-
amplitude oscillations. For n ¼ 1 the oscillation frequency
f0 is deduced from a damped sinusoidal fit to the data [18]. In
Fig. 1(a) we give f0 as a function of as for three different Vz
from data sets taken for Ref. [18]. Time traces for n ¼ 2 need
amore refined spectral analysis (see below). Figure 1(b) plots
the (mean) frequency deduced from measurements with
n ¼ 2 as a function of as for Vz ¼ 10ER and Vz ¼ 12ER.
The observed frequencies clearly depend on both the
interaction strength as and the on-site occupancy n in the
lattice. The Hubbard model (dashed lines) predicts constant
J, which solely depends on the lattice depth Vz [19], and
cannot reproduce this behavior.
For the theoretical description of the experiment

we make use of the generalized Hubbard Hamiltonian
for the one-dimensional lattice including density-induced
tunneling, which is given by

Ĥ ¼ −J
X

i

b̂†i b̂iþ1 þ c:c.þ U
2

X

i

n̂iðn̂i − 1Þ þ E
X

i

n̂ii

− asΔJ
X

i

b̂†i ðn̂i þ n̂iþ1Þb̂iþ1 þ c:c: ð2Þ

with the tunneling matrix element J, the on-site interaction
U, a tilt E per lattice site, bosonic annihilation (creation)

operators b̂ð†Þi on site i, and n̂i ¼ b̂†i b̂i. The first line is the
standard Bose-Hubbard model, whereas the second line
represents the density-induced tunneling operator. It orig-
inates from the two-body interaction operator and repre-
sents the dominant off-site contribution for neutral atoms in
optical lattices [7–9]. Its amplitude,

ΔJ ¼ −
4πℏ2

m

Z
d3rw�ðr − dÞw�ðrÞw2ðrÞ; ð3Þ

is determined by the Wannier functions wðrÞ of the lowest
band of the lattice with the lattice spacing d using a
δ-shaped interaction potential. This tunneling operator is
explicitly occupation dependent due to the factor
(n̂i þ n̂iþ1). Assuming that the time evolution on neighbor-
ing sites is predominantly given by a constant total
occupation ni þ niþ1 ¼ 2n, we can define an effective
total tunneling operator as

Ĵtot ¼ −Jtot
X

i

b̂†i b̂iþ1 þ c:c: ð4Þ

using Eq. (1), which allows us to retrieve the standard
Bose-Hubbard model with a modified tunneling rate Jtot.
It is a priori not clear that conventional and density-

induced tunneling can be combined to one total hopping
process. To verify this simplification, we perform exact
numerical simulations of the time evolution of the initial
state by diagonalizing the generalized Hubbard model (2)
for a finite lattice with N ¼ 8 sites. Using the exact
solution, we are not restricted to short time traces, allowing
us to resolve the full Fourier spectrum. We first discuss the
case of an initial on-site occupation n ¼ 1. As an example,
the insets in Fig. 2(a) show time traces of the number of
doublons (ni ¼ 2) for Vz ¼ 10ER and as ¼ 400a0 at the
resonance E ¼ U. Here, the number of triply occupied sites
(triplons) is negligible. The Fourier spectrum [Fig. 2(a)]
contains a broad range of frequencies that are peaked
around f0 ¼ νJtot=h (bottom) or around f0 ¼ νJ=h (top)
for the standard Hubbard model (ΔJ ¼ 0) with the pre-
factor ν ≈ 4, as indicated by the vertical lines. By means of
time-dependent DMRG of up to 40 sites, it has been shown
in Ref. [18] that the system size does not significantly affect
the characteristic oscillation frequency f0 for Mott chains
beyond 3 sites but causes increased many-body damping
with increasing system size (see also [17]).
In Fig. 2(b), the frequency spectrum is plotted against the

bare tunneling rate J=h for the generalized Hubbard model
(ΔJ ≠ 0). The centroid of the two strongest modes matches
with the total tunneling rate 4Jtot=h, while the dashed line
corresponds to the standard Hubbard model with 4J=h.
Plotted as a function of the scattering length as [Fig. 2(c)],
the difference between standard and generalized Hubbard
model becomes even more obvious. As the absolute value
of the on-site interaction is compensated by the resonance
condition E ¼ U, the doublon dynamics is independent of
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as within the standard Hubbard model (dashed line). In
contrast, the interaction dependence of density-induced
tunneling imprints a linear dependence on the observed
frequency modes f0 ∝ J þ asΔJ.
Although the theoretical spectrum of the time evolution

contains several distinct features, we can conclude that the
main frequency can be attributed to an oscillation with
4Jtot=h. Fitting the experimental time traces for n ¼ 1 with
a damped oscillation [18] allows us to extract this central
frequency plotted in Fig. 1(a). The experimental data points
pinpoint the dependence on the interaction strength as
discussed above and agree well with the generalized model
including density-induced tunneling. Note that the inter-
action-induced admixture of higher bands will lead to a
slightly modified rate for the total tunneling [7–9,20].
Let us now turn to the direct verification of the density

dependence of the interaction-driven tunneling process by
preparing an initial state with on-site occupancy n ¼ 2.
Because of Jtot ¼ ð2n − 1ÞasΔJ, the impact of the density-
induced tunneling is expected to increase by a factor of 3.
In Fig. 3(a) we plot the number of doubly and singly
occupied sites as a function of Emeasured after th ¼ 50 ms
for two different values of U. Close to the expected
resonance position at E ¼ U, we observe two minima in
the doublon number [Fig. 3(a)] that can be attributed to the
processes j2; 2i↔j3; 1i and j2; 0i↔j1; 1i. The latter arises
from tunneling at residual defects (empty sites) in the n ¼ 2
shell [17]. The splitting of the resonance arises from
corrections to the on-site energy U due to multiorbital
effects [7,11,21–23] causing an intrinsically occupation
dependent on-site energy Un. While for the defect process
j2; 0i↔j1; 1i the resonance is at E11 ¼ U2, the process
j2; 2i↔j3; 1i is resonant at E22 ¼ 3U3 − 2U2 < U2.

(a) (b) (c)

FIG. 3 (color online). Doublon dynamics for on-site occupancy n ¼ 2. (a) Number of doubly (upper lines) and singly (lower lines)
occupied sites as a function of E after th ¼ 50 ms for as ¼ 245ð5Þa0 (circles) and as ¼ 354ð5Þa0 (diamonds) at Vz ¼ 12ER, giving
resonances for the j2; 2i↔j3; 1i oscillations at E22 ¼ h × 940ð20Þ Hz and E22 ¼ h × 1283ð20Þ Hz, respectively (see [17] for details).
The dashed lines indicate the calculated U and U=2. (b) Measured Fourier spectra extracted from time traces of the doublon number at
Vz ¼ 10ER and E ¼ E22 for different as. The solid blue lines result from multiple Gaussians fits to the data [17]. The shaded area
projected into the axis plane depicts the simulated Fourier spectra shown in (c). The lines show the expected frequencies for the standard
(dashed) and extended (solid) Hubbard model [Eq. (1)]. (c) Simulated Fourier spectra as a function of as incorporating a Gaussian
broadening with a width w ¼ 1 Hz. The markers denote peak positions deduced from the experimental data shown in (b). The marker
size scales linearly with the area under the respective fits. Open circles indicate broad Gaussian fits with a large ratio of width and
amplitude w=A > 0.2.

(a)

(b) (c)

FIG. 2 (color online). (a) Fourier spectrum of the simulated
doublon number dynamics for E ¼ U without (upper panel) and
with (lower panel) inclusion of density-induced tunneling. Here,
n ¼ 1, Vz ¼ 10ER, and as ¼ 400a0. The dashed (solid) line
shows the predominant frequency component predicted without
(with) density-induced tunneling. The shaded areas incorporate a
Gaussian broadening with a width w ¼ 4 Hz for visualization
purposes. The insets show the time trace for the first 30 ms.
(b) Mode spectrum as a function of the single-particle tunneling
rate J=h tuned via the lattice depth Vz for as ¼ 400a0
(w ¼ 4 Hz). (c) Mode spectrum as a function of as at fixed Vz ¼
10ER (w ¼ 1 Hz). In (b) and (c) the dashed line shows 4J=h,
while the solid line shows 4Jtot=h, including density-induced
tunneling.
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The resonances at E22=2 correspond to the second-order
tunneling process j2; 2; 2i↔j3; 2; 1i. Second-order tunnel-
ing to hole defects j2; 2; 0i↔j1; 2; 1i at E11=2 does not
contribute, since the intermediate state j1; 3; 0i is strongly
off resonant. For the measurement of the time traces we
determine E22 for a fixed lattice depth and scattering length.
Since the two resonances at E11 and E22 are not fully
separated, we expect (off-resonant) contributions from
defect sites to contribute with up-shifted frequencies [18].
In Fig. 3(b) Fourier spectra extracted from the exper-

imental time traces [17] are shown for three different values
of as in the range −100a0 ≤ as ≤ þ400a0. We obtain the
main frequency modes using Gaussian fits (blue areas).
While the lowest observable frequency is caused by
decoherence and particle loss, we can identify the dominant
mode at the expected position f0 ¼ νðJ þ 3asΔJÞ (red
solid line), with ν ¼ 4

ffiffiffi
3

p
for the j2; 2i↔j3; 1i process. For

the two positive values of as, where the frequency range
leads to better resolved peaks, a splitting of this mode can
be observed. This splitting is in general also visible in the
theoretical spectrum in Fig. 3(c), where the circles denote
the experimentally extracted modes. Moreover, we can
identify a mode with lower frequencies that could probably
be assigned to the mode around ν ≈ 3

ffiffiffi
3

p
=2 in the numeri-

cal spectrum. However, defect sites will effectively lead to
decoupled chains with different lengths surrounded by
unoccupied sites affecting the prefactor ν.
The extracted dominant frequencies are plotted for Vz ¼

10ER and Vz ¼ 12ER [17] in Fig. 1(b), where we use the
centroid for split resonances. For both lattice depths, we see
a good agreement with the theoretical expectation
f0 ¼ 4

ffiffiffi
3

p ðJ þ 3asΔJÞ. In combination with results for
n ¼ 1, this serves as direct confirmation of the density
dependence of the tunneling.
As has been demonstrated recently [24], the dynamics in

tilted lattices also allows the study of higher-order tunnel-
ing processes. In Fig. 4(a), the numerically determined
doublon number, averaged over the time evolution, is
plotted as a function of E, depicting several distinct
resonances at fractional values of U in accordance with
the experimental observation in Ref. [24]. The resonance at
E ¼ U=2 is caused by second-order tunneling processes
via an intermediate site. In this case, the hopping to next-
nearest neighbor sites restores the resonant tunneling
condition (2E ¼ U), whereas direct nearest-neighbor tun-
neling is suppressed. Higher-order resonances at E ¼ U=n
are caused by long-range tunneling processes proportional
to JðJ=UÞn−1. Density-induced tunneling causes a broad-
ening of the resonances for repulsive interactions (blue line)
and a narrowing for attractive interactions (red line).
The numerical Fourier spectrum for the resonant second-

order tunneling dynamics is plotted in Fig. 4(b). A clear
evidence for the impact of density-induced tunneling is the
breaking of the symmetry between attractive and repulsive
interaction [17,25], which holds for the Hubbard model,

i.e., ΔJ ¼ 0. This frequency shift can also be observed
in the experimental time traces in Figs. 4(c) and 4(d),
where the faster initial increase for repulsive interactions
indicates a higher frequency. In addition, we find a decrease
in the average doublon number for attractive interac-
tions, which we attribute to the reduced width of the
second-order tunneling resonance [see Fig. 4(a)], as the
variation of E across the sample due to the small residual
harmonic confinement and a variation in as due to the
magnetic field gradient (gray area) is comparable with the
resonance width.
We have presented the first direct measurement of

density-induced tunneling of ultracold atoms in optical
lattices. We observe resonant doublon dynamics when
compensating the interaction energy U by an applied tilt.
The measured frequency exhibits a linear dependence on
the on-site occupancy and on the scattering length. Our
numerical simulations show that an extended Hubbard
model incorporating the density-induced tunneling accu-
rately describes the experiment. For approximately con-
stant densities both tunneling processes can be described
with a single effective amplitude J þ ð2n − 1ÞasΔJ that
can differ strongly from the conventional tunneling J.
Furthermore, we have studied second-order tunneling
processes and observe an asymmetry between repulsive
and attractive interactions caused by density-induced

(a)

(c) (d)

(b)

FIG. 4 (color online). (a) Time-averaged number of the sum of
doublons and triplons (upper lines) and triplons only (lower lines)
as a function of E for Vz ¼ 8ER at as ¼ 250a0 (blue) and as ¼
−250a0 (red). The solid lines show numerical simulations
including density-induced tunneling, while for the dashed lines
ΔJ ¼ 0. The gray area indicates sampling over E in the experi-
ment with an estimated width of ≈50 Hz. (b) Numerical Fourier
spectrum of the doublon dynamics as a function of as revealing
the breaking of symmetry between attractive and repulsive
scattering for E ¼ U=2. The dashed line indicates f0 ¼ νðJ þ
asΔJÞðJ þ 2asΔJÞ=U with a prefactor ν ¼ 19 in accordance
with [24]. Experimental time traces at the U=2 resonance for
(c) as ¼ þ250a0 and (d) as ¼ −250a0 at Vz ¼ 8ER showing an
asymmetric behavior between repulsive and attractive interaction
caused by density-induced tunneling. The dashed lines are guides
to the eye that indicate the steady-state doublon number.
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tunneling. This underlines its importance for exchange
interactions that are, e.g., responsible for antiferromagnetic
properties in solids [26]. Our results grant future perspec-
tives for detailed investigations of complex interaction
effects caused, e.g., by higher orbitals and off-site inter-
actions [7,20].
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