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We present the first Green’s function Monte Carlo calculations of light nuclei with nuclear interactions
derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the
interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo
calculations. We demonstrate a systematic improvement with each order for the binding energies of A ¼ 3

and A ¼ 4 systems. We also carry out the first few-body tests to study perturbative expansions of chiral
potentials at different orders, finding that higher-order corrections are more perturbative for softer
interactions. Our results confirm the necessity of a three-body force for correct reproduction of
experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems
using quantum Monte Carlo methods with chiral interactions.
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Important advances in our knowledge of light nuclei
have been possible in recent years by using sophisticated
numerical techniques like hyperspherical harmonics, the
no-core shell model, and the Green’s function Monte Carlo
(GFMC) method. In particular, the nuclear GFMC method
is one of the most accurate methods used to calculate the
ground and excited state energies and other properties of
light nuclei with mass number A ≤ 12 by using realistic
nuclear Hamiltonians [1–7] based on the Argonne v18
two-body potential [8] and the Urbana/Illinois models of
three-body forces [9,10]. Despite the many successes of the
nuclear GFMC method, until now it has been limited to
modern phenomenological potentials. Interactions derived
from chiral effective field theory (EFT) [11,12] provide a
direct connection between ab initio nuclear structure
calculations and the underlying theory of strong inter-
actions, quantum chromodynamics (QCD). These poten-
tials have been successfully used in various regions of the
nuclear landscape: from structure and reactions of light
nuclei [13–15] to medium-mass nuclei [16–21] to infinite
matter [22–26]. In this work, we combine, for the first time,
the accurate nuclear GFMC machinery with chiral EFT
interactions, which makes possible the first few-body
studies of higher-order corrections in the chiral expansion.
The GFMCmethod is an exact method for studying nuclei

with chiral interactions, because it works with the inter-
actions in their bare form; that is, the Hamiltonian does not
need to be softened by using renormalization group or other
techniques [27]. Therefore, GFMC calculations of light
nuclei with chiral EFT interactions will also be important
to benchmark calculations using other methods that rely on
such techniques. Until recently, nucleon-nucleon (NN)
interactions derived from chiral EFT have been nonlocal,

a feature which naturally results from the construction of
these interactions in momentum space where locality is not
typically an important consideration. For many nuclear
structure methods, nonlocal interactions do not pose any
problems. In the case of the GFMC method, however,
nonlocality poses nontrivial technical challenges. Sources
of nonlocality in chiral EFT include the regulator choices,
momentum-dependent contact interactions, and higher-order
pion exchanges and relativistic contributions. The latter two
appear only at next-to-next-to-next-to-leading order (N3LO)
and beyond. Up to next-to-next-to-leading order (N2LO), the
other two sources can be eliminated by choosing local
regulators and an appropriate set of contact interactions as
discussed in Ref. [24]. This opens up GFMC calculations of
light nuclei with chiral potentials.
In this Letter, we discuss the first GFMC calculations of

light nuclei for A ≤ 4 using NN interactions derived from
chiral EFT.We present a systematic study of the ground-state
energies at leading order (LO), next-to-leading order (NLO),
and N2LO and study the cutoff dependence at each order.
We first briefly review the GFMC method and discuss the
interaction used herein. Then we present our results for the
A ≤ 4 systems and discuss the perturbative expansion of
these forces at different values of the regulator cutoff.
The GFMCmethod consists of propagating in imaginary

time t a trial wave function jΨTi to extract the ground-state
wave function jΨ0i. In the long imaginary-time limit, one
has

lim
t→∞

e−HtjΨTi →jΨ0i; ð1Þ

with H the Hamiltonian of the system, if jΨTi is not
orthogonal to jΨ0i. Ground-state and low-lying excited-state
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observables are calculated by stochastic integration of the
matrix elements hΨT jOe−HtjΨTi, with O some observable.
For reviews of the method, see, for example, Refs. [2,4].
For the sampling of the propagator, e−Ht, the standard
GFMC method relies on locality of the potential. Though
some progress has been made on this front [28,29], it remains
technically challenging to sample nonlocal terms by using
the GFMC method without introducing large statistical
errors. Local chiral EFT interactions allow for the use of
the GFMCmethod with a minimum of further complications
to calculate the propagator; however, a careful optimization
of the two-body correlations which enter the wave function is
necessary to account for the new potentials (as these are
considerably different from the harder Argonne family of
potentials). An attempt to develop a quantum Monte Carlo
method to deal with nonlocal nuclear forces has been
presented in Ref. [30] using the soft N2LO potential of
Ref. [31]. Auxiliary-field quantum Monte Carlo calculations
for a chiral interaction with a sharp cutoff were recently
presented in Ref. [32].
We first clarify the notions of local and nonlocal

interactions. If p ¼ ðp1 − p2Þ=2 and p0 ¼ ðp0
1 − p0

2Þ=2
are the incoming and outgoing relative momenta of the
nucleon pair, respectively, it is convenient to work in terms
of the momentum transfer q ¼ p0 − p and the momentum
transfer in the exchange channel k ¼ ðp0 þ pÞ=2. When
Fourier transformed, terms with q lead to local interactions
that depend only on the interparticle distance r. However,
terms with k are nonlocal contributions depending on ∇r
that complicate the sampling of the propagator in the
GFMC method. The only exception to this is the spin-
orbit term, which contains a q × k term that can be
included in the GFMC propagator [2].
Chiral EFT provides a systematic expansion for nuclear

forces and predicts a hierarchy of two- and many-nucleon
interactions [11,12]. At a given order, the interactions
receive contributions from pion exchanges, which make
up the long- and intermediate-range parts, as well as from
short-range contact interactions. In particular, up to N2LO,
the unregulated one- and two-pion-exchange contributions
[33,34] are local. To construct local chiral potentials,
Refs. [24,35] regulated the pion-exchange contributions
with a regulator directly in coordinate space flongðrÞ ¼
1 − e−ðr=R0Þ4 , where R0 is a cutoff. We use R0 of 1.0, 1.1,
and 1.2 fm, which approximately correspond to momentum
cutoffs 500, 450, and 400 MeV, respectively. These values
are obtained by Fourier transforming the regulator function,
integrating over all momenta, and identifying the result
with a sharp cutoff [35]. In addition, following Ref. [34],
we employ for the two-pion-exchange contributions a
spectral-function regularization with cutoff ~Λ (we will
use ~Λ ¼ 1000 MeV). The dependence on ~Λ is very weak
[35], as we will demonstrate comparing to results for
~Λ ¼ 1400 MeV. For the short-range interactions, the local
chiral potentials of Refs. [24,35] select from the

overcomplete set of operators ones that are local in
coordinate space. This is possible up to N2LO; at N3LO,
a number of nonlocal interactions will survive. For these
higher-order interactions, we expect that they can be
included perturbatively in the GFMC calculation, as is done
with nonlocal parts in the Argonne v18 potential already [2].
The short-range interactions are then regulated with a
regulator ∼e−ðr=R0Þ4 complementary to the long-range one.
Interactions derived from chiral EFT are expected to

show an order-by-order improvement or convergence.
However, note that a calculation at N2LO with only
two-body forces is incomplete, as three-body forces enter
at this order. For each nucleus, we perform calculations at
LO, NLO, and N2LO, varying the cutoff R0 from 1.0 to
1.2 fm. In Fig. 1 and Tables I–III, we present the GFMC
results for the binding energies of the A ¼ 3 and A ¼ 4
nuclei for the various chiral potentials (the Coulomb
potential is also included). As the chiral order increases,
we can see a reduction in the theoretical uncertainty coming
from the R0 variation. For example, for 4He, the bands are
∼3.8 MeV, ∼1.4 MeV, and ∼1.1 MeV at LO, NLO, and
N2LO, respectively. For 4He at N2LO, we also used the
spectral-function cutoff of ~Λ ¼ 1400 MeV with R0 ¼
1.0 fm and R0 ¼ 1.2 fm. These calculations lowered the
4He binding energy by 0.41 MeV (∼2%) and 0.46 MeV
(∼2%), respectively (compared to the case with ~Λ ¼
1000 MeV), which demonstrates a weak dependence on
~Λ. The calculated radii are consistent with the general trend
in the binding energies: that is, at LO, the nuclei are
significantly overbound, and the corresponding radii are
too small compared to experiment; at NLO, the nuclei
are underbound, and the radii are larger than experiment;
at N2LO, the nuclei are still underbound, but closer to
experiment, and the corresponding radii are smaller (closer
to experiment).
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FIG. 1 (color online). 4He binding energies (Eb) at LO, NLO,
and N2LO compared with experiment and with the Argonne v08
energy. Also shown is a first-order perturbation-theory calcu-
lation of the N2LO binding energy using the wave function at
NLO: ENLO þ Vpert. See Eq. (2) and the discussion that follows.
The GFMC statistical errors are generally smaller than the points.
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The LO calculations bear additional discussion since, as
Fig. 1 and Tables I–III show, we find that the nuclei are
significantly overbound: by as much as ∼65% of the
experimental binding energy in the case of 4He with the
cutoff at R0 ¼ 1.2 fm. In the LO case, there are only two
low-energy couplings, and the phase shifts are fit only up to
Elab ¼ 50 MeV; therefore, the effective-range physics is
not reproduced and the potential is too attractive [35]. Since
we expect the lightest nuclei with A ¼ 2 and A ¼ 3 to be
least sensitive to higher energy scales, we might expect that
these nuclei are less overbound than 4He. This trend is,
indeed, borne out. At LO,3He and 3H are overbound by as
much as ∼41% and ∼36%, respectively (compared with the
∼65% for 4He). The deuteron is underbound by ∼9% [35].
The chiral EFT expansion is an expansion in powers of

momentum or of the pion mass ∼Q over a breakdown scale
Λb. As we increase the chiral order, we expect suppression of
the contributions from higher orders by powers of Q=Λb. It
is clear from the results presented in Fig. 1 and Tables I–III
that the NLO contribution is an important correction to the

LO results. But the same results suggest that the contribu-
tions fromN2LO are small relative to the NLO contributions.
There is also evidence from calculations of the neutron-
matter energy using chiral potentials that suggests perturba-
tive behavior of chiral interactions [24,25]. Therefore, it
seems reasonable to attempt first-order perturbation theory
for the A ≤ 4 nuclei, treating the difference in the potentials
as a perturbation,

Vpert ¼ VN2LO − VNLO: ð2Þ
The results of these calculations for 4He are shown in Fig. 1.
For each of the three values of the cutoff, we find the first-
order contribution to be positive. The smallest correction
comes in the R0 ¼ 1.2 fm case as might be expected.
(Larger R0 corresponds to lower Λ in momentum space,
so that R0 ¼ 1.2 fm is the softest potential used.) It would,
of course, be desirable to compute higher-order perturbative
corrections; however, it is difficult to obtain the second-order
result or beyond.
We can, however, study first-, second-, and third-order

perturbation-theory calculations for the deuteron. The meth-
ods developed in Refs. [28,29] allow for the determination of
the first N excited states of the deuteron. In the calculations
discussed here,N ∼ 800, giving truncation errors of less than
10−10 MeV. Table IV shows the results of these calculations
with the NLO and N2LO potentials with three different
cutoffs. The first-order correction is positive and varies from
12% to 33% of the NLO deuteron binding energy for
R0 ¼ 1.2–1.0 fm. The corrections at second and third order
are both negative and range from 13% to 31% (at second
order) and from 0.46% to 0.93% (at third order). The R0 ¼
1.0 fm case has the largest corrections at each order in the
perturbation expansion; the R0 ¼ 1.2 fm case has the
smallest. There is some evidence, then, that the perturbative
expansion for Vpert is converging in each case but faster for
the softer potentials.
The perturbative check we have presented treats the

difference in the fitted potentials at N2LO and NLO as a

TABLE I. Binding energies and point proton radii for 4He. The
errors given are statistical GFMC uncertainties. The experimental
binding energy and root-mean-square (rms) point proton radius

are Eb ¼ −28.31 MeV and
ffiffiffiffiffiffiffiffiffi
hr2pti

q
¼ 1.45 fm, respectively.

Order R0 (fm) Eb (MeV)
ffiffiffiffiffiffiffiffiffi
hr2pti

q
(fm)

LO
1.0 −42.83ð1Þ 1.02(1)
1.1 −45.57ð2Þ 1.00(1)
1.2 −46.62ð1Þ 1.00(1)

NLO
1.0 −21.56ð1Þ 1.57(1)
1.1 −22.33ð1Þ 1.54(1)
1.2 −22.94ð6Þ 1.53(1)

N2LO
1.0 −23.72ð1Þ 1.52(1)
1.1 −24.13ð1Þ 1.50(1)
1.2 −24.86ð1Þ 1.47(1)

TABLE III. Binding energies and point proton radii for 3H. The
errors given are statistical GFMC uncertainties. The experimental
binding energy and rms point proton radius are Eb ¼ −8.48 MeV

and
ffiffiffiffiffiffiffiffiffi
hr2pti

q
¼ 1.59 fm, respectively.

Order R0 (fm) Eb (MeV)
ffiffiffiffiffiffiffiffiffi
hr2pti

q
(fm)

LO
1.0 −11.00ð1Þ 1.27(1)
1.1 −11.42ð1Þ 1.26(1)
1.2 −11.54ð1Þ 1.27(1)

NLO
1.0 −7.10ð1Þ 1.62(3)
1.1 −7.25ð2Þ 1.62(3)
1.2 −7.35ð1Þ 1.64(3)

N2LO
1.0 −7.55ð1Þ 1.61(2)
1.1 −7.63ð1Þ 1.61(3)
1.2 −7.74ð1Þ 1.58(2)

TABLE II. Binding energies and point proton radii for 3He. The
errors given are statistical GFMC uncertainties. The experimental
binding energy and rms point proton radius are Eb ¼ −7.72 MeV

and
ffiffiffiffiffiffiffiffiffi
hr2pti

q
¼ 1.76 fm, respectively.

Order R0 (fm) Eb (MeV)
ffiffiffiffiffiffiffiffiffi
hr2pti

q
(fm)

LO
1.0 −10.42ð1Þ 1.36(1)
1.1 −10.78ð1Þ 1.36(1)
1.2 −10.88ð1Þ 1.36(1)

NLO
1.0 −6.35ð2Þ 1.92(2)
1.1 −6.56ð1Þ 1.90(2)
1.2 −6.67ð1Þ 1.88(1)

N2LO
1.0 −6.78ð1Þ 1.87(2)
1.1 −6.90ð1Þ 1.84(1)
1.2 −7.01ð1Þ 1.82(1)
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perturbation, Eq. (2). We have also tested whether the
new interactions entering at N2LO are perturbative. To this
end, we take the NLO parts of the N2LO potential and
treat the higher-order interactions as a perturbation. In this
approach, the deuteron and 4He are unbound at first order
in perturbation theory. These results appear to be due to the
large ci’s which enter at N2LO. This pattern may be
different in a chiral EFT with explicit Delta degrees of
freedom, where the N2LO ci’s are natural.
In addition to the binding energies and radii, we have

calculated one- and two-body distributions and display
them in Figs. 2 and 3. The proton distribution is given by

ρ1;pðrÞ ¼
1

4πr2

D
Ψ0

���
X
i

1þ τzðiÞ
2

δðr − jri −Rc:m:jÞ
���ΨT

E
;

ð3Þ
where ri is the position of the ith nucleon, Rc:m: is the
center-of-mass of the nucleus, and τzðiÞ=2 is the z compo-
nent of the isospin of the ith nucleon. We have calculated
the two-body distribution functions in the T ¼ 1 isospin
state, defined as

ρðT¼1Þ
2 ðrÞ ¼ 3ρ2;1ðrÞ þ ρ2;τ·τðrÞ

4
; ð4Þ

where

ρ2;OðrÞ ¼
1

4πr2

D
Ψ0

���
X
i<j

Oijδðr − jrijjÞ
���ΨT

E
: ð5Þ

In Figs. 2 and 3, it is clear that for distances r≳ 1.5 fm the
NLO, N2LO, and Argonne v08 distributions are very similar.
At short distances (r≲ 1.5 fm) the LO distributions are
significantly larger than the distributions calculated with
the other interactions. In Fig. 3, the different short-range
behavior of the chiral forces and the Argonne v08 interaction
is clear; the softer two-body T ¼ 1 NLO and N2LO
distributions (larger values of the distributions at the origin)
suggest that short-range correlations between nucleons
reflect the presence or absence of a hard core in the

interaction [35]. In the lower panel in Fig. 3, we show
the dependence of ρðT¼1Þ

2 ðrÞ on the cutoff by using the
N2LO potentials. The one- and two-body distributions lend
further support to the discussion above about the over-
binding of the nuclei at LO. Figures 2 and 3 imply that at
LO the nucleons tend to be closer together than at higher
order or with the phenomenological Argonne v08 potential.
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FIG. 2 (color online). One-body proton distributions for 4He
with R0 ¼ 1.2 fm at LO, NLO, and N2LO compared with results
for the Argonne v08 interaction. The error bars (generally smaller
than the symbol size) are the statistical errors.
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FIG. 3 (color online). Two-body T ¼ 1 distributions for 4He
using chiral potentials and the Argonne v08 interaction. The top
panel has the distributions calculated with R0 ¼ 1.2 fm at LO,
NLO, and N2LO. The bottom panel shows the dependence of the
N2LO distribution at short distances on the cutoff R0.

TABLE IV. Perturbation calculations for 2H using the NLO and
N2LO potentials. The notation ENLO indicates the ground-state

energy of the NLO Hamiltonian. VðnÞ
pert indicates the sum of the

perturbative corrections up to the nth order.

Eb (MeV)

Calculation R0 ¼ 1.0 fm R0 ¼ 1.1 fm R0 ¼ 1.2 fm

ENLO −2.15 −2.16 −2.16
ENLO þ Vð1Þ

pert −1.44 −1.80 −1.90
ENLO þ Vð2Þ

pert −2.11 −2.17 −2.18
ENLO þ Vð3Þ

pert −2.13 −2.18 −2.19
EN2LO −2.21 −2.21 −2.20
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We have presented a systematic GFMC study of light
nuclei A ≤ 4 with local NN interactions derived from chiral
EFT up to N2LO. There is an order-by-order improvement
for the binding energies, which is also shown by the weaker
cutoff dependence. Our calculations confirm the necessity
of a three-body force for nuclei with A ≥ 3. We have also
presented the first nonperturbative study of the interplay
between different orders in the chiral expansion. We find
that higher-order contributions are more perturbative for the
softer potentials, and our calculations for the deuteron
suggest that the perturbation expansion is converging to the
result at N2LO. This study lays the groundwork for detailed
nuclear GFMC studies of chiral EFT potentials for A ≤ 12
nuclei, which will also impact future simulations of larger
systems with the auxiliary-field diffusion Monte Carlo
method.
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