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We employ a small x color glass condensate (CGC)+ nonrelativistic QCD (NRQCD) formalism to
compute J=ψ production at low p⊥ in proton-proton collisions at collider energies. Very good agreement is
obtained for total cross sections, rapidity distributions, and low momentum p⊥ distributions. Similar
agreement is obtained for ψ 0 production. We observe an overlap region in p⊥ where our results match
smoothly to those obtained in a next-to-leading order collinearly factorized NRQCD formalism. The
relative contribution of color singlet and color octet contributions can be quantified in the CGCþ NRQCD
framework, with the former contributing approximately 10% of the total cross section.
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The production of heavy quarkonium states is an
excellent laboratory to understand hadronization in QCD
[1]. A significant development was the nonrelativistic QCD
(NRQCD) factorization formalism [2] that provides sys-
tematic estimates of the magnitudes of universal long
distance matrix elements (LDMEs) contributing to cross
sections of heavy quarkonium states. Based on this
NRQCD framework, next-to-leading order (NLO) compu-
tations performed in recent years [3–5] describe nearly all
the high p⊥ (p⊥ ≫ M, where M is the quarkonium mass)
data on heavy quarkonium production at hadron colliders,
with further improvements anticipated from high p⊥
logarithmic resummations [6–8].
In contrast, heavy quarkonium production in the low

p⊥ ≲M region is far from understood. This regime
dominates the total cross section for production of heavy
quarkonia at colliders. For collider center-of-mass (c.m.)
energies

ffiffiffi
s

p
, the dynamics is sensitive to large logarithms

in x ∼M=
ffiffiffi
s

p
. Summing these small x logs leads to the

phenomenon of gluon saturation, characterized by a
dynamically generated semihard scale QS in the hadron
wave functions [9,10]. Recently in [11], the color glass
condensate (CGC) effective theory of small x QCD [12]
results for the short distance heavy quark pair production
cross section [13–15] were combined with the LDMEs of
NRQCD to provide analytic expressions for a large number
of quarkonium final states.
In this Letter, we will provide the first quantitative

results in this novel CGCþ NRQCD framework for J=ψ
production in proton-proton (pþ p) collisions at collider
energies. (Previous CGC comparisons to quarkonia for
pþ p collisions employed the color evaporation model
[16]. For pþ A collisions, see also [17].) We show that
results in this framework can be matched smoothly to NLO
perturbative QCD results at high p⊥, thereby providing the
missing link for a unified description for quarkonium
production in all phase space. This unified framework

is identical for the description of both pþ p and
proton-nucleus (pþ A) collisions. With some numerical
effort, it can be extended systematically [18] to quarkonium
production in the early stages of nucleus-nucleus (Aþ A)
collisions, where quarkonium dissociation is a signature of
quark-gluon plasma formation. A further nice feature of
this framework is that allows one to quantify the relative
contribution of color singlet and color octet channels to
quarkonium final states in both pþ p and pþ A collisions.
In the NRQCD factorization formalism [2], the inclusive

production of a heavy quarkonium state H is expressed as

dσH ¼
X
κ

dσ̂κhOH
κ i; ð1Þ

where κ ¼ 2Sþ1L½c�
J are the quantum numbers of the

produced intermediate heavy quark pair with standard
spectroscopic notation for the angular momentum, and
the superscript c denotes the color state of the pair, which
can be either color singlet (CS) with c ¼ 1 or color octet
(CO) with c ¼ 8. For J=ψ production, the primary focus

here, the most important intermediate states are 3S½1�1 , 1S½8�0 ,
3S½8�1 , and 3P½8�

J . In Eq. (1), hOH
κ i are nonperturbative but

universal NRQCD LDMEs, which can be extracted from
data. The dσ̂κ denote the short distance coefficients for
the production of a heavy quark pair with quantum number
κ. Based on the heavy quark pair production amplitude
in [13,15], dσ̂κ have been calculated for all S-wave and
P-wave intermediate states in [11].
In the following, we will give general expressions for

“dilute-dense scattering.” In the CGC power counting [12],
this could represent either pþ A collisions or forward pþ
p collisions. At collider energies, x in the forward going
“dilute” proton may be small enough that small x resum-
mation is relevant, but phase space densities are still small.
Conversely, phase space densities in the “dense” backward
going proton can reach their maximal value of 1=αs,
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indicating gluon saturation. Because large x modes are
probed at high p⊥ ≫ QS, there is a limited range in p⊥
where the CGC effective theory is valid. At such large p⊥,
as we shall discuss further, perturbative computations in the
collinear factorization framework should be more reliable.
In this dilute dense CGC framework, we can express dσ̂κ

in the color octet channel as [11]

dσ̂κ

d2p⊥dy
¼CO αsðπR2

pÞ
ð2πÞ7ðN2

c − 1Þ
Z

k1⊥;k⊥

φp;ypðk1⊥Þ
k21⊥

N Yðk⊥Þ

×N Yðp⊥ − k1⊥ − k⊥ÞΓκ
8; ð2Þ

when κ is CO,
R
k⊥ ≡

R
d2k⊥, p⊥ ½y� are transverse

momentum [rapidity] of produced heavy quarkonium,
yp ≡ lnð1=xpÞ ½Y ≡ lnð1=xAÞ� is the rapidity of gluons
coming from dilute proton [dense proton]. The expression
for Γκ

8 can be found in [11]. Further,

N Yðk⊥Þ ¼ N Yð−k⊥Þ≡
Z
r⊥

eik⊥·r⊥DY;r⊥ ; ð3Þ

where DY;r⊥ ¼ hTr½VFð0ÞV†
Fðr⊥Þ�iY=Nc is the dipole for-

ward scattering amplitude, VF are lightlike Wilson lines in
the fundamental representation, and Nc the number of
colors. Here, h� � �iY represents the renormalization group
evolved expectation value of this correlator in the target
background field evaluated at rapidity Y. For more details,
we refer the reader to [12]. The unintegrated gluon
distribution inside the proton is then expressed as

φp;ypðk1⊥Þ ¼ πR2
p
Nck21⊥
4αs

~N A
ypðk1⊥Þ; ð4Þ

where πR2
p is the effective transverse area of the proton, and

~N A is similar toN in Eq. (3) but with its Wilson lines in the
adjoint representation.
Interestingly, if κ is CS, dσ̂κ depends on both

dipole correlators and novel quadrupole correlators
[11]. These latter are defined as Qx⊥x0⊥y0⊥y⊥ ¼
hTr½VFðx⊥ÞV†

Fðx0⊥ÞVFðy0⊥ÞVFðy⊥Þ�iY=Nc. Like the dipole
correlators, they are universal gauge invariant quantities,
and appear in a number of final states [19,20]. The energy
evolution of both dipole and quadrupole correlators is
described by the Balitsky-JIMWLK hierarchy of small x
RG equations [21–23] (JIMWLK represents Jalilian-
Marian, Iancu, McLerran, Weigert, Leonidov, and
Kovner). For the dipole correlator, in the large-Nc limit,
the hierarchy has a closed form expression, the well-known
Balitsky-Kovchegov (BK) equation [21,24]. This equation
can be solved numerically and is widely used in phenom-
enological applications.
In contrast, no such simple form exists for the quadrupole

correlator and solving the corresponding Balitsky-JIMWLK

equation is cumbersome for phenomenological applications.
While the expressions simplify in a quasiclassical approxi-
mation in the large Nc limit [13,20], the result is still too
complicated for our purposes. For our study here, we
discovered an approximate factorized expression for the
quadrupole correlator,

Qx⊥x0⊥y0⊥y⊥ ≈Dx⊥−x0⊥Dy0⊥−y⊥ −Dx⊥−y0⊥Dx0⊥−y⊥ þDx⊥−y⊥Dx0⊥−y0⊥

þ1

2
ðDx⊥−y0⊥Dx0⊥−y⊥ −Dx⊥−y⊥Dx0⊥−y0⊥Þ

×ðDx0⊥−y⊥ −Dy0⊥−y⊥ þDy0⊥−x⊥ −Dx0⊥−x⊥Þ: ð5Þ

This result is exact when any two adjacent positions
coincide: x⊥ ¼ x0⊥, x0⊥ ¼ y0⊥, y0⊥ ¼ y⊥, or y⊥ ¼ x⊥. We
have checked [25] that it is a good approximation to the
Balitsky-JIMWLK results in [26].
Making use of Eq. (5), the short distance coefficients for

the CS channels in [11] simplify significantly to

dσ̂κ

d2p⊥dy
¼CS αsðπR2

pÞ
ð2πÞ9ðN2

c − 1Þ
Z

k1⊥;k⊥;k0⊥

φp;ypðk1⊥Þ
k21⊥

N Yðk⊥Þ

×N Yðk0⊥ÞN Yðp⊥ − k1⊥ − k⊥ − k0⊥ÞGκ
1; ð6Þ

where G has a different functional form from Γ in [11]
because of the above simplification. In particular, for the
3S½1�1 channel,

G
3
S½1�
1

1 ¼ k21⊥ðk21⊥ þ 4m2Þ
12m

×
�

1

l2⊥ þ k21⊥=4þm2
−

1

l02⊥ þ k21⊥=4þm2

�
2

; ð7Þ

with l⊥ ¼ k⊥ − ððp⊥ − k1⊥Þ=2Þ; l0⊥ ¼ k0⊥ − ððp⊥ − k1⊥Þ=2Þ.
The key ingredient in both Eqs. (2) and (6) is N Yðk⊥Þ,

which is obtained by solving the running coupling BK
(rcBK) equation directly in momentum space. We use
McLerran-Venugopalan (MV) initial conditions [27,28] for
the dipole amplitude at the initial rapidity scale Y0 ≡
lnð1=x0Þ (with x0 ¼ 0.01) for small x evolution. Since the
structure function F2 in deeply inelastic scattering (DIS) is
directly propotional (at small x) to the dipole amplitude, all
the parameters in the rcBK equation are fixed from fits to
the HERA DIS data [29]. Other initial conditions discussed
in the literature [30] give similar results at low p⊥ for heavy
quark pair production but differ significantly at high p⊥
where the present formalism is not reliable no matter which
initial condition is used. While the formalism captures the
dominant higher order corrections at small x [31,32], this is
less assured as one goes to larger x with increasing p⊥.
Because NLO CGC expressions for Eqs. (6) and (2) that
extend their p⊥ range are not available, we choose to
restrict data comparisons to the more reliable small to
moderate p⊥ region. We shall explore whether there is a
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p⊥ range where our results overlap with the successful high
p⊥ NLO collinear factorization approach [33,34].
A similar issue of matching to the collinear framework

occurs when x > x0 is accessed, respectively, in the
forward or backward going protons. Since the rcBK
equation is solved only for x < x0, we devised a scheme
to extrapolate the dipole amplitude to larger x, using results
for the collinear factorized gluon parton distribution func-
tions (PDFs). From the relation between the PDFs and the
unintegrated gluon distribution [11,15], using Eq. (4), one
obtains

xpfp=gðxp;Q2Þ ¼xp≤x0aðxpÞC
Z

Q2

k21⊥ ~N A
ypðk1⊥Þdk21⊥; ð8Þ

where C≡ ðπR2
p=4π3ÞðNc=4αsÞ and aðxpÞ is an extra free

function that we will now determine. We assume aðxpÞ ≈ 1
when xp is close to x0, such that aðx0Þ ¼ 1 and a0ðx0Þ ¼ 0.
These two conditions result in two equations, which
allow us to simultaneously determine Rp and Q. If we
use the CTEQ6M PDFs [35] for fp=gðxp;Q2Þ and the
rcBK equation with the MV initial condition to calculate
~N A
ypðk1⊥Þ, we determine Q ¼ Q0 ¼ 5.1 GeV and Rp ¼

0.48 fm. (Interestingly, this value for Rp is in very good
agreement with the transverse gluon radius of the proton
extracted from HERA diffractive data [36].) Having fixed
Rp and Q0 with our matching conditions, we use the
extrapolation

~N A
ypðk1⊥Þ ¼xp>x0aðxpÞ ~N A

Y0
ðk1⊥Þ; ð9Þ

with aðxpÞ determined to be

aðxpÞ ¼ xpfp=gðxp;Q2
0Þ
�
C
Z

Q2
0

k21⊥ ~N A
Y0
ðk1⊥Þdk21⊥

�
−1
:

ð10Þ
The dilute-dense approximation employed here will

break down when the phase space densities in both protons
are large. This may be the case at central rapidities,
especially at the LHC. In the CGC framework, quark pair
production in this dense-dense regime cannot be computed
analytically but may be feasible numerically. This is,
however, beyond the scope of the present work and is a
further source of systematic uncertainty.
Before we confront our framework to the data, we need to

fix the charm quark mass and determine the LDMEs. We set
the charm quark mass to be m ¼ 1.5 GeV, approximately
one half the J=ψ mass. The CO LDMEs were extracted in
the NLO collinear factorized NRQCD formalism [4] by
fitting Tevatron high p⊥ prompt J=ψ production data; this

gives hOJ=ψð3S½1�1 Þi ¼ 1.16=ð2NcÞ GeV3, hOJ=ψ ð1S½8�0 Þi ¼
0.089 � 0.0098 GeV3, hOJ=ψ ð3S½8�1 Þi ¼ 0.0030 �
0.0012 GeV3 and hOJ=ψð3P½8�

0 Þi¼ 0.0056�0.0021GeV3.

Note that the high sensitivity of short distance cross sections
to quark mass is mitigated by the mass dependence of the
LDMEs. The latter are extracted from particular data sets
using Eq. (1). For a different quark mass, the LDMEs
extracted would be quite different [33], thereby ensuring
only a weak quark mass uncertainty to NRQCD predictions.
We also note that while other NLO NRQCD fits exist,
they are not suitable for our use. For example, the fit in [7]

relies on a cancellation between the 3S½8�1 channel and 3P½8�
J

channels, which occurs only at NLO where short distance
coefficients can be negative. To account for the uncertainties
outlined, as well as higher order in αs corrections, we
introduce a systematic uncertainty of 30% on top of the
statistical uncertainties from the LDMEs.
In Fig. 1, we compare our results for the J=ψ total

cross section at midrapidity for
ffiffiffi
S

p
from 0.2 to 7 TeV. In

general, our predictions are consistent with the collider
data. For the top RHIC energy, our result is a little larger
then the PHENIX data. However, (see Fig. 3), we are able
to describe the PHENIX data on the p⊥ dependence at
forward rapidity. The small discrepancy with PHENIX data
at central rapidities may reflect the fact that our formalism
is most reliable for large c.m. energy or for forward
rapidities. As stated previously, our computation is the
first that includes contributions from both the color singlet
and color octet channels to the total cross section. In
contrast to the color singlet model (CSM) [37,38] pre-
diction, we find that in our formalism the CS contribution
is only 10% of the total cross section. Our estimates show
that for a large nucleus this relative contribution will rise to
approximately 15%–20%.
Our results for the differential cross section as a function

of rapidity compared to 7 TeV data at LHC are shown in
Fig. 2. All the data lie well within the error band. At the
larger rapidities, the results become sensitive to x > 0.01 in
either the projectile or target (and conversely very small x in
the target or projectile). At these forward (or backward)
rapidities, as discussed previously, the matching of the
dipole amplitude to the unintegrated PDFs at large x is
important. Note that this matching condition allowed us to

0.2 0.5 1.0 2.0 5.0 10.0

0.5

1.0

2.0

5.0

10.0

S TeV

ALICE, y 0.9
CDF, y 0.6
PHENIX, y 0.35
CGC NRQCD

FIG. 1 (color online). The J=ψ total production cross section at
hadron colliders in the CGCþ NRQCD framework compared to
data at midrapidity. The data are from [39–42].
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fix the radius Rp which was the only normalization
parameter in Eqs. (2) and (6)—the apparent αs dependence
cancels out when Eq. (4) is substituted in these equations. It
is therefore striking that our results explain both the overall
normalization at Y ¼ 0 and the relative normalization at
forward rapidities after matching the PDFs smoothly to the
dipole amplitude at x ¼ 0.01.
In Fig. 3, we compare our results for the J=ψ differential

cross section as a function of p⊥ with experimental data at
several c.m. energies and rapidity regions. It is clear that
small p⊥ data is well described by our CGCþ NRQCD
formalism. Further, as anticipated in the previous discus-
sion, the results in this formalism begin to disagree with
data at higher p⊥. From previous experience with single
inclusive LHC data [29], one expects to overshoot the data
with MV initial conditions—this is precisely what we see.
In Fig. 3, we also show the NLO collinear factorized
NRQCD results [46] which show good agreement with data
at large p⊥. It is very interesting to observe an overlap
region around p⊥ ∼ 5–6 GeV, which can be described by
both the CGCþ NRQCD formalism and the NLO collin-
early factorized NRQCD formalism. A good matching of
the small x and collinear factorized formalisms at large p⊥
is seen in single inclusive hadron production by imposing
exact kinematic constraints in the small x formalism [47].
Since leading order collinear factorization results for heavy
quark pair production are obtained as a limit of the CGC
result [48], imposing exact kinematics may help better
understand the overlap between the two formalisms. In the
low p⊥ region, a further refinement of our formalism
will include resummation of logarithms of p⊥=M for
p⊥ ≪ M [49–51].
Most of the experimental data presented are for inclusive

J=ψ production. These include J=ψ’s produced from
B-meson decays as well as prompt production of J=ψ ’s.
The latter includes feed down from higher excited char-
monium states as well as direct J=ψ production. However,
we only considered direct J=ψ production contribution in
our theory results. Nevertheless, the comparison is mean-
ingful. First, the B-meson decay contribution in the small
p⊥ region is small, of order less than 10%. Second, the

LDMEs in [4] are obtained by fitting prompt J=ψ data.
Thus feed down contributions are already roughly esti-
mated in our results. With the expressions in [11] for the
higher charmonium states, a fully consistent treatment of
prompt J=ψ production data is feasible in the near future.
As a first step, we compare our results for the ψ 0 differential
cross section as a function of p⊥ with data in Fig. 3. In this
comparison, we set the charm quark mass to be m ¼
Mψ 0=2 ≈ 1.84 GeV and used the CO LDMEs extracted in
[46]. Theory and data agree well. However, if we set m ¼
1.5 GeV for ψ 0, the results overshoot the data. As noted,
one anticipates the sensitivity to the quark mass in the short
distance cross sections to be offset by their dependence in
the LDMEs. However, for ψ 0, only two linear combinations
of the three CO LDMEs of ψ 0 can be determined [46];
because it is unconstrained, we set hOψ 0 ð3P½8�

0 Þi ¼ 0 here.
Thus, ψ 0 has larger systematic uncertainties relative to J=ψ
that subsume the sensitivity of results to the quark mass.
Based on our present work, all three ψ 0 CO LDMEs can be
determined from a global fit. A consistent treatment of all
charmonium and bottomonium states is in progress [25]. In
the latter case, we anticipate a larger contribution from the
logarithmic resummation of [49–51].
Comparing our results to related work, J=ψ total cross

sections were studied recently in the CSM within the broad
framework of collinear factorization [55,56]. While the
trend of the total cross section is described, the theory
uncertainties have to be as large as a factor of 10 for data to
lie within errors. Likewise, the CEM with collinear fac-
torization [57] describes the total cross section, rapidity
distributions, and p⊥ distributions with much larger uncer-
tainties than our framework.
The results presented here are timely given the wealth of

data extant and anticipated from RHIC to LHC for pþ p
and pþ A collisions. When combined with developments
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FIG. 3 (color online). The ψ 0 (top curve) and J=ψ (other four
curves) differential cross section as a function of p⊥. Data from
[39,42,45,52–54]. NLO NRQCD predictions are taken from [46].
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FIG. 2 (color online). J=ψ differential cross section as a
function of rapidity at LHC. Data from [42–45].
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in collinearly factorized NRQCD, they set the groundwork
for a comprehensive understanding of the mechanism of
heavy quark hadronization in QCD.
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