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We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of
gravity. We show that in cosmological solutions of very general classes of models extending gravity—all
scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity—a direct
correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification
in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-
independent manner, a comparison of the behavior of gravitational waves from cosmological sources with
large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.
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Over the last decade, we have established beyond
reasonable doubt that, in its recent past, the expansion
of the universe has been accelerating. This has challenged
our beliefs about the theory of gravity: the only possibility
available in general relativity with nonexotic matter is a
cosmological constant, which would suffer from severe
fine-tuning issues. Alternatively, the mechanism could be
dynamical, i.e., feature at least one new degree of freedom.
These dynamics would modify the predictions of concord-
ance cosmology and give us a means to carry out precision
tests of gravity at extremely large scales.
Frequently, in extended models of gravity, perfect fluids

apparently carry anisotropic stress: there is gravitational
slip, i.e., the values of the two scalar gravitational potentials
sourced by matter are not equal. This affects structure
formation and weak lensing. Recently, it was shown that
the ratio of the two potentials is actually a model-
independent observable [1,2], which Euclid should be able
to measure to a precision of a few percent, depending on the
precise assumptions [3]. This begs the question as to what
detecting or not detecting anisotropic stress actually means.
In this Letter, we show that the propagation of tensor

modes (gravitational waves, GWs) is also modified when-
ever the anisotropic stress is present at first order in
perturbations sourced by perfect-fluid matter. We demon-
strate this relationship in the context of three very large
classes of extensions of the gravitational sector: general
scalar-tensor theories (Horndeski [4,5]), Einstein-aether
models [6–8], and bimetric massive gravity [9,10]. GWs
are the only propagating degrees of freedom in general
relativity, and it is natural to define modified gravity models
as those where the gravitational waves are modified in such
a nontrivial manner. Since imperfect fluids with anisotropic
stress also split the two gravitational potentials but do not

modify the propagation of tensor modes, this definition
allows us to separate modifications of gravity from imper-
fect fluids.
The emphasis of this Letter is not on new calculations

(see, e.g., the review [11]), but rather on new relations
which are very general, were not noted before in the
literature and could have a significant impact on tests of
gravity on cosmological scales.
Assumptions.—We assume that the universe is well-

described by small linear perturbations living on top of a
spatially flat Friedmann metric. We take the line element
for the metric on which matter and light propagate as

ds2 ¼ a2ðτÞf−ð1þ2ΨÞdτ2þð1−2ΦÞ½δijþhij�dxidxjg;

where τ is the conformal time, a the scale factor, Φ and Ψ
are the scalar gravitational potentials, and hij is the traceless
spatial metric (tensor) perturbation, i.e., the gravitational
wave. We assume that the matter sector can be described as
a fluid arising from the averaging of the motion of particles.
We comment on the effect of this fluid’s being imperfect.
We use the prime to denote a derivative with respect to
conformal time.
The presence of anisotropic stress results in a difference

in values between the two scalar potentials and can be
described through the gravitational slip,

η≡ Φ
Ψ
: ð1Þ

In concordance cosmology, η ¼ 1, with small corrections
appearing from neutrino free streaming. At second order in
perturbations, anisotropic stress also always appears even
when the matter consists completely of dust [12], but in the
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late Universe should be smaller than jη − 1j ≲
10−3 [12,13].
On the other hand, various modifications of gravity [such

as fðRÞ [14], fðGÞ [15] or DGP [16]] do feature an Oð1Þ
correction to the slip parameter at linear order in perturba-
tions, at least at some scales and even in the presence of just a
perfect-fluidmatter. It is, however,well-known that thevalue
of η can be modified by a change of frame, e.g., a conformal
rescaling of the metric, making its value seemingly
ambiguous.
In Refs. [1,2], it was shown that comparing the evolution

of redshift-space distortions of the galaxy power spectrum
with weak-lensing tomography allows us to reconstruct η as
a function of time and scale in a model-independent
manner. Such an operational definition removes the frame
ambiguity, since the measurement picks out the particular
metric on the geodesics of which the galaxies and light
move. It is the gravitational slip in that metric that is being
measured by such cosmological probes. With the ambiguity
of frame removed, the gravitational slip is a bona fide
observable, rather than just a phenomenological parameter.
Fixing the metric also determines what is considered a
gravitational wave: we call these the propagating spin-2
perturbations of the metric on which matter moves. (In the
case of massive gravity, we are referring to the helicity-2
modes of the metric coupled to matter.)
In this Letter, we assume that the gravitational sector is

extended by one of three classes of models featuring a
single extra degree of freedom: (1) a very general scalar-
tensor theory belonging to the Horndeski class [4],
(2) Einstein-aether theory featuring an extra vector and
spontaneous violation of Lorentz invariance, or (3) bimetric
massive gravity. We will discuss each of these in turn and
show that similar conclusions hold.
Modified gravity defined.—Dynamical models of late-

time acceleration can feature interactions between the new
degree of freedom and curvature or metric (scalar-tensor or
Einstein-aether) and the two metrics (bimetric). On a
cosmological background, these interactions can alter the
speed of propagation of gravitational waves (cT), make the
effective Planck mass (M�) evolve in time [17] or add a
mass μ, giving

h00ij þ ð2þ νÞHh0ij þ c2Tk
2hij þ a2μ2hij ¼ a2Γγij; ð2Þ

where hij is the tensor wave amplitude in either of the two
polarizations, H ≡ a0=a is the Hubble rate in conformal
time. The deviations away from standard behavior are
contained in ν≡H−1ðd lnM2�=dtÞ, the Planck mass run
rate, and cT, the speed of tensor waves, with both of these
quantities defined in the Jordan frame of the matter. (Note
that no observable quantity depends on M� itself, since a
changed Planck mass can always be reabsorbed into the
definition of masses if it is constant.) We will show that
scalar-tensor and Einstein-aether models can change ν and
cT. On the other hand, in massive bigravity, the equation is

modified by the mass of the graviton μ. The transverse-
traceless tensor γij is a source term for the gravitational
waves. In the case of bimetric massive gravity, γij is the
gravitational wave in the second metric and the two tensor
modes mix as they propagate. When the matter fluid has
anisotropic stress, this appears as the source term γij, but it
never modifies the homogeneous part of Eq. (2). However,
this anisotropic stress is itself coupled to the gravitational
waves and can lead to dissipation for horizon-scale GW
modes [18,19].
As we stressed above, Eq. (2) describes the evolution of

the gravitational waves of the Jordan-frame metric. This
choice is unique if our observations (e.g., redshifts, time
delays) are taken to result from the geometry of theUniverse.
We should also note that, for bimetric massive gravity, the
Einstein framewith standardgravitons does not exist evenon
a perturbative level. On the other hand, the issue of which of
the twometrics matter couples to is an important one, which
has to be fixed to define the model properly.
As is frequently said, anisotropic stress is a feature of

modified gravity. For any gravity theory at the linear level,
the anisotropy constraint in the Newtonian gauge takes the
form

Φ −Ψ ¼ σðtÞΠþ πm; ð3Þ

with Π a function of a particular combination of back-
ground and linear perturbation variables, depending on the
theory. The quantity σðtÞ is a background function only,
depending on the parameters of the Lagrangian. The πm is
the scalar anisotropic stress sourced by the matter fluid.
This appears whenever the perfect-fluid approximation
breaks down and the particle distribution contains higher
moments than those described by a perfect fluid. For
example, free streaming in neutrinos gives such a term
even in concordance cosmology, but such contributions are
very small in the late Universe.
The aim of this Letter is to provide an unambiguous

definition of modified gravity as one where the propagation
of gravitational waves [Eq. (2)] is affected. The gravita-
tional slip and gravitational waves are connected since both
the anisotropy constraint [Eq. (3)] and the GW evolution
equation [Eq. (2)] arise from the spatial–traceless part of the
linearized Einstein equations. In the remainder of this
Letter, we will demonstrate that the coupling σðtÞ appearing
in the anisotropy equation [Eq. (3)] consists of the
quantities that also control the modification of the tensor
propagator. This means that modified gravity models
popular in the literature are included in our definition.
However, imperfect-fluid matter while acting as a source

to both the anisotropy constraint [Eq. (3)] and the GW
equation [Eq. (2)], cannot directly modify the homo-
geneous part of the GW equation. Our definition of
modified gravity therefore breaks the ambiguity that arises
in the presence of such a source and points to an approach
for differentiating modified gravity from imperfect fluids.
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Scalar-tensor theories.—In this section, we consider the
most general class of theories featuring one extra scalar
degree of freedom which has Einstein equations with no
more than second derivatives on any background and are
universally coupled to matter: the Horndeski class of
models. (We have not considered in detail the extension
discussed in [20–22], where higher derivatives appear in
the Einstein equations, but can be eliminated by solving the
constraints.) This class includes the majority of the popular
models of late-time acceleration such as quintessence,
perfect fluids, fðRÞ gravity, fðGÞ gravity, kinetic gravity
braiding, and galileons (see, e.g., the reviews [23,24]). The
Horndeski Lagrangian is defined as the sum of four terms
that are fully specified by a noncanonical kinetic term
Kðϕ; XÞ and three arbitrary coupling functions
G3;4;5ðϕ; XÞ, where X ¼ −gμνϕ;μϕ;ν=2 is the canonical
kinetic energy term and where the comma denotes a partial
derivative.
We make extensive use of the formulation for linear

structure formation in scalar-tensor theories introduced in
Ref. [25]. It was shown there that the form of linear
perturbation equations for all Horndeski models can be
completely described in terms of the background expansion
history, density fraction of matter today Ωm0, and four
independent and arbitrary functions of time only,
αK; αB; αM, and αT, which mix the four functional degrees
of freedom of the action, K and Gi. The Planck mass run
rate αM and the tensor speed excess αT control the
existence of anisotropic stress. Unrelated to the anisotropic
stress, if the braiding αB ≠ 0, then the dark energy will
cluster at small scales, with the kineticity αK controlling at
what scales this happens.
The anisotropy constraint in the notation of Eq. (3) is [26]

σ ¼ αM − αT;Π ¼ Hδϕ= _ϕþ αT=ðαM − αTÞΦ; ð4Þ

where δϕ is a perturbation of the scalar field. Note that the
split between σ and Π above is arbitrary. The gravitational
wave equation [Eq. (2)] is modified through

ν ¼ αM; c2T ¼ 1þ αT; μ2 ¼ 0; Γ ¼ 0: ð5Þ

It is clear fromEq. (4) thatwhenbothαM ¼ αT ¼ 0 there isno
new contribution to either to anisotropic stress or tensor
propagation. In the context of scalar-tensor models and the
late Universe with πm ≈ 0, a detection of anisotropic stress
therefore is direct evidence that one or both of the parameters
αT andαM are different from their concordancevalues of zero
and that gravity is modified in the sense of this work.
In principle, one could imagine that there may exist

models defined by a choice of the functions αi in which the
scalar perturbation arranges itself dynamically in such a
configuration that no gravitational slip appears, even though
one of αM;T is not zero. This would be a very particular
situation or one requiring a very tuned choice of model
parameters. For example, it happens at the asymptotic future

—and static—pure de Sitter limit. It can be shown that it is,
in fact, impossible to have such a cancellation in a model
where the scalar has real dynamics. We defer the proof to a
more technical follow-up study.
Einstein-aether theories.—Einstein-aether models

[27,28] are a class of theories which feature an extra vector
degree of freedom (the aether) uμ. They are a subclass of
general vector theories requiring that uμ be given a constant
and timelike vacuum expectation value uμuμ ¼ −1 and that
it be minimally coupled. This chooses a preferred frame,
violating Lorentz symmetry. The infrared limit of Hořava-
Lifshitz (HL) models [29–31]—relevant for late-time
cosmology—is closely related, with the vector field forced
to be hypersurface orthogonal and thus providing a natural
slicing for the space-time [32].
The Lagrangian can be written in a basis of four

operators, through a kinematic decomposition of ∇μuν
[32]: the squares of acceleration, expansion, twist and
shear, and their associated dimensionless coefficients ca,
cθ, cω, and cσ, respectively. (In the language of Ref. [32],
these correspond to ca ≡ −c1 þ c4, cθ ≡ 1

3
ðc1 þ c3Þ þ c2,

cω ¼ c1 − c3, cσ ≡ c1 þ c3.)
The extra dynamical degree of freedom at the linear level

is the perturbation of the spatial components ui of the
vector uμ, which can be decomposed into longitudinal and
transverse parts as ui ¼ ∂iuþ ûi. The longitudinal part
modifies the anisotropy constraint [33], which in the
notation of Eq. (3) is

Π ¼
�
u
a2

�0
; σ ¼ −cσ: ð6Þ

At the same time, the parameters of the tensor equation
[Eq. (2)] are given by

ν ¼ 0; c2T ¼ ð1þ cσÞ−1; μ2 ¼ 0; Γ ¼ 0: ð7Þ

In conclusion, the modifications of both the anisotropy
constraint and the tensor wave equation are driven by the
same coupling cσ of the shear. If cσ appears in the action, it
will modify both the anisotropic stress and the gravitational
wave propagation. Thus a detection of anisotropic stress in
the late Universe with πm ≈ 0 in the context of these models
also implies that gravity is modified in the sense of
this work.
Bimetric massive gravity.—The bimetric massive gravity

model features two dynamical metrics, g1 and g2, each with
its own Einstein–Hilbert term in the action. In addition, a
potential term describes nonderivative interactions between
the two metrics, Uðg1; g2; aiÞ. The five constants ai para-
metrize these interactions and are the theory’s free param-
eters. The interactions inevitably give mass to one of the
two metrics [34], and the theory in general propagates a
massless and a massive spin-two field [35], and it provides
a nonlinear extension of the Fierz-Pauli theory [36], which
is free of the so-called Boulware-Deser ghost [9,37–40].
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One usually considers the matter fields to be coupled to one
of the metrics, which we shall call g1.
Bimetric gravity provides a natural extension of the so-

called dRGT massive gravity, with the latter being a
subcase of the former, in the limit where the second metric
becomes nondynamical. Cosmological solutions for dRGT
and bimetric theories have been studied in, for instance,
Refs. [10,41–45] and [46–51,51], respectively, with the aim
of explaining the current acceleration of the Universe
without the need of an explicit cosmological constant in
the action. It has been shown however that in dRGT,
homogeneous and isotropic backgrounds are not solutions
of the background equations of motion [52], or when these
solutions exist, they suffer from strong coupling [42], ghost
[53,54], or nonlinear instabilities [54,55], and we will
therefore concentrate on the bimetric version only. (In
fact, a gradient instability for the new helicity-0 mode in the
bimetric setup appears to exist for for some choices of
parameters [51,56] but not others [57]. Whenever healthy
solutions exist, the conclusions of this Letter hold.)
We use the setup and notation of Ref. [56] (for a similar

analysis see also Ref. [58]), choosing both the background
metrics to be homogeneous and isotropic. At the linear
level, the theory predicts the existence of anisotropic stress
for the scalar Newtonian potentials of the matter metric g1,
giving the anisotropy constraint the form

σ ¼ a2m2f1; Π ¼ E2; ð8Þ

in the notation of Eq. (3). E2 is the scalar coming from the
tensor perturbation of the second metric g2. The function f1
is a background-dependent function that depends on the
ratio between the scale factors of the two metrics and the
constant parameters ai.
The equation for gravitational waves [Eq. (2)] is modi-

fied through

ν ¼ 0; c2T ¼ 1; μ2 ¼ m2f1; Γ ¼ m2f1: ð9Þ

Massive bigravity models change neither the Planck mass
nor the speed of gravitational waves. They do give gravitons
a mass and an interaction term. As we can easily see, the
coefficients modifying the anisotropy constraint and the
graviton equation ofmotion are all proportional tom2f1. Yet
again, if anisotropic stress is observed in the late Universe
withπm ≈ 0 in the context of thesemodels,wemust conclude
that gravity is modified in the sense of this work.
Conclusions and implications.—In this Letter, we have

shown that a very close relationship exists between two
properties of general extensions of gravity which until now
have not been considered together: when anisotropic stress
is apparently sourced by perfect-fluid matter perturbations
at linear level, the propagation of gravitational waves is
modified. Such a relationship generally exists in all
Horndeski theories with an extra scalar, Einstein-aether
theories featuring an extra vector field and bimetric massive

gravity, featuring a second rank-2 tensor field—this covers
a very large fraction of all the extensions of gravity with
homogeneous backgrounds. We conjecture that this is a
feature of all models in general configurations, and we
choose to use this physics as the unambiguous definition of
modified gravity.
We note here that the anisotropic stress and clustering of

the new degree of freedom—frequently described as a
change to the effective Newton’s constant—are both
completely independent quantities, the presence of which
is not contingent on each other.
The relationship between tensor propagation and gravi-

tational slip is a result of both being part of the spatial-
traceless part of the linearized Einstein equations: the same
corrections in the action modify the anisotropy constraint
and the action for the graviton.
We stress that this relationship would hold whenever

gravity is modified, not only at low redshifts where
extensions of gravity are frequently utilized as dynamical
models of acceleration. For example, during recombina-
tion, if models of gravity with apparent anisotropic stress
from perfect fluids are introduced, one would then need to
adjust the behavior of gravitational waves. At the same
time, this new anisotropic stress would change the lensing
and the integrated Sachs-Wolfe effect. All these effects
would modify the CMB spectrum, in particular, the B-
mode polarization [33,59,60].
This deep relationship between anisotropic stress and

tensor modes implies that measurements of large-scale
structure and of gravitational waves can give independent
information on the properties of each other. For example, a
comparison between the time of arrival of neutrinos and
gravitational waves from some energetic event is a probe of
the speed of tensor modes cT and their mass μ [61]. A
luminosity distance from standard sirens imputed from the
decayof the amplitude of thegravitationalwavesprobesν; μ,
and Γ [62]. Such observations are clearly extremely chal-
lenging and futuristic, but may one day be possible. (Tests
such as the binary pulsar [63] probe the coupling of matter
sources to gravitational waves and therefore are not neces-
sarily sensitive to the modification in propagation described
here.)On the other hand, the slip parameter η in somemodels
can be an order-one ratio of small numbers [e.g., in fðRÞ
gravity, where the permitted parameter values are αM ¼
−αB ≲ 10−5 [64], while η ¼ 1=2 inside the Compton scale].
Measurements of anisotropic stress can be more informative
about tensormodes than direct probes of gravitational waves
in such a case. Ultimately, it should be possible to combine
them to disambiguate the various properties of the theory of
gravity at cosmological scales. We leave the discussion of
how feasible this is to future work.
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