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We introduce a self-learning tomographic technique in which the experiment guides itself to an estimate
of its own state. Self-guided quantum tomography uses measurements to directly test hypotheses in an
iterative algorithm which converges to the true state. We demonstrate through simulation on many qubits
that Self-guided quantum tomography is a more efficient and robust alternative to the usual paradigm of
taking a large amount of informationally complete data and solving the inverse problem of postprocessed
state estimation.
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The act of inferring a quantum mechanical description of
a physical system—assigning it a quantum state—is
referred to as tomography. Tomography is a required,
and now routine, task for designing, testing and tuning
qubits—the building blocks of a quantum information
processing device [1]. However, in a grand irony, the exact
same exponential scaling that gives a quantum information
processing device its power also limits our ability to
characterize it.
That tomography is a problem exponentially hard in the

number of qubits has lead to many proposals for efficient
learning within restricted subsets of quantum states [2,3].
On the other hand, if we expect to have prepared a specific
target state, efficient protocols exist to estimate the fidelity
to this state [4,5]. These protocols are direct in the sense
that few measurements are required to provide an estimate
of the fidelity to the target rather than first reconstructing
the state then calculating the fidelity.
The proposal presented here is direct in the same sense

as Refs. [4,5], but converges to the state itself. The
algorithm is iterative—from directly estimating a distance
measure to the underlying state, the experiment guides
itself to a description of its own state: self-guided
quantum tomography (SGQT). The distance measure m
is arbitrary, in the sense that any measure will work.
However, the more rapidly the experiment can provide
an estimate for m, the more rapidly SGQT will converge,
such that if m can be estimated efficiently, then SGQTwill
be efficient.
Before describing exactly what SGQT is, we first state

what it is not by reviewing the problem of tomography.
There is some true state ρ which generates data, a list of
measurement outcomes corresponding to effects
D ¼ fE0; E1;…g. The probability to observe this data is
given by the Born rule

PrðDjρÞ ¼
Y

k

TrðρEkÞ: ð1Þ

The prevailing method is to solve the inverse problem of
identifying an accurate estimate, σ, of ρ given a sample data
set drawn from this distribution. Here the approach is quite
different. We begin with a distance measure on states
mðρ; σÞ. The only requirement is that this measure can be
estimated from experiment, such that we have access to

fðσÞ ¼ hmðρ; σÞi: ð2Þ

This quantity fluctuates from noise which can come from a
variety of sources but is always present due to the
fundamental statistical nature of quantum mechanics—also
known as shot noise.
Here we will provide an algorithm to iteratively propose

new states σ such that we converge to ρ only via estimates
of fðσÞ. The core of the algorithm is a stochastic opti-
mization technique known as simultaneous perturbation
stochastic approximation (SPSA) [6].
SPSA is an iterative optimization technique which uses

only two (noisy) function calls per iteration to estimate the
gradient. In the context of state estimation, this means that
SGQT requires only two proposal states σ� and exper-
imental estimates fðσ�Þ to provide an unbiased estimate of
the gradient, which in turn provides the direction to the true
state. This is the key element which provides SGQTwith its
efficiency. For one might expect that to estimate the
gradient would require Oð22nÞ proposal states, where n
is the number of qubits. In the remainder, we detail the
algorithm and demonstrate via numerical experiments the
claimed efficiency and robustness of SGQT.
The steps of each iteration proceed as follows (suppose

we are at iteration k). (1) Generate a random direction to
search in defined by Δk. (2) Calculate the estimated
gradient in that direction,

gk ¼
fðσk þ βkΔkÞ − fðσk − βkΔkÞ

2βk
Δk: ð3Þ

(3) Calculate the next iterate via
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σkþ1 ¼ σk þ αkgk: ð4Þ

The functions αk and βk control the convergence and are
user defined, although they are usually specified in the
forms

αk ¼
a

ðkþ 1þ AÞs ; βk ¼
b

ðkþ 1Þt ; ð5Þ

where a; A; b; s, and t are chosen first roughly based on
extensive numerical studies for many problems then
tweaked based on numerical simulations for the problem
at hand. It is useful to note that much of the former task has
been done and generally good choices are [7] s ¼ 0.602 and
t ¼ 0.101. These values indeed work for our problem
but the asymptotically optimal [6] values s ¼ 1 and
t ¼ 1=6 seem to perform well even early on. The random
directionΔk is arbitrary, up to some constraints. Given some
vector representation of the operators, we take the common
choice Δk ¼ �1 for each element of the vector and
the sign randomly assigned by a fair coin toss. For a; A,
and b, the optimal parameters are more problem dependent
and here we have two different sets depending on whether
we are demonstrating asymptotic performance or not—these
values will be noted when the results are discussed later on.
Convergence results on SPSA [6,7] imply that the infidelity,
for example, decreases at rateOð1=kγÞ, where the exponent
actually achieved is highly problem dependent. Asymptotic
results, however, give a rate γ ≈ 1 to first order.
We illustrate the iterations of the algorithm in Fig. 1 for

the metricmðρ; σÞ ¼ 1 − Fðρ; σÞ, the infidelity between the
two states. For pure states this is equivalent to mðψ ;ϕÞ ¼
1 − jhψ jϕij2 and can be estimated by measuring in the basis
containing jϕi. That is, by counting the number of out-
comes in the direction of jϕi, say nðϕþÞ, we can estimate

mðψ ;ϕÞ ≈ 1 −
nðϕþÞ

nðϕþÞ þ nðϕ−Þ
; ð6Þ

which fluctuates due to statistical noise. In Fig. 1, we see
this manifest through the volatility of the path taken by the
algorithm when nðϕþÞ þ nðϕ−Þ≡ N ¼ 102 and N ¼ 104.
We might expect then that more experiments are needed to
mitigate these fluctuations as we converge on the target true
state. We will see, however, that this intuition fails us. That
is, for a fixed number of iterations, the performance is
roughly independent of the number of experiments. This
will demonstrate the superior efficiency of SGQT to
converge well beyond what we might expect to be the
“noise floor.”
In our discussion, we will refer to the following three

algorithmic and experimental parameters: N, the number of
experiments per estimate of m; M, the number of estimates
ofm per iteration; and k, the number of iterations. Thus, the
total number of experiments is Ntot ¼ NMk. For the
standard finite difference gradient estimation, we have
M ¼ 2d, where d is the real dimension of the state space.
For n pure qubits d ¼ 2ð2n − 1Þ, which grows exponen-
tially. For SGQT, however, M ¼ 2 regardless of the
dimension; thus we will restrict our attention to N and k
with the understanding that Ntot ¼ 2Nk.
We continue with the qubit example of Fig. 1 to

determine how the performance of SGQT scales with N
and k retaining the fidelity objective function in Eq. (6). In
Fig. 2, we plot the infidelity as a function k. We find,
independent of N, the asymptotic scaling of infidelity is

Start

True

FIG. 1 (color online). Estimating the state of a qubit via SGQT
and the fidelity metric. On the left, each fidelity estimate was
generated with N ¼ 102 single shot experiments—on the right,
N ¼ 104. Each line represents one of three runs with k ¼ 103

iterations.
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FIG. 2 (color online). The infidelity vs the number of iterations
k achieved by SGQT. Each line is the median performance of
SGQT over 100 randomly (according to Haar measure) chosen
pure states. The shaded regions represent the interquartile range
of infidelities. The inset shows the performance as functionNk by
simply shifting the original lines by their corresponding N. The
SGQT parameters chosen for these simulations where a ¼ 3,
A ¼ 0, and b ¼ 0.1.
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Oð1=kγÞ with γ ∈ ð1.16; 1.20Þ. This is slightly better than
what we would expect from the asymptotic rate of Oð1=kÞ.
The inset in Fig. 2 shows that in the asymptotic regime,

the performance is roughly independent N, but also shows
that, in terms of the total number of experiments, fewer
repetitions per measurement setting is better initially. That
is, contrary to what we might expect, it is not necessary to
increase the number of experimental repetitions to increase
the accuracy of the estimated fidelity. This false intuition
would, however, hold true if we were to use an optimization
algorithm (such as a standard gradient descent) which does
not take account of the stochasticity in estimating the
fidelity.
Above we have explored the efficacy of SGQT for single

qubit tomography. In Fig. 3, we generalize to multiple
qubits. The fits to the Oð1=kγÞ scaling gave values
γ ∈ ð0.80; 1.05Þ, although it is difficult to trust this as an
asymptotic fit for the data on 10 qubits (which gave
γ ¼ 0.80). Separately fixing k and fitting the infidelity to
OðdηÞ (shown in the inset of Fig. 3) gave values
η ∈ ð1.02; 1.35Þ. As expected, since even estimating the
fidelity to an arbitrary single pure target state is not efficient

in the number of qubits, n, the convergence of SGQT is not
efficient in the number of qubits.
If, on the other hand, we restrict the class of states to one

which can be efficiently specified and the fidelity to which
can be efficiently estimated, SGQT becomes efficient. As
an example, consider the W class of states which have
found use in the theory of entanglement [8]. An n qubit
W-class state is one of the form

jψi ¼ α1j10…0i þ α2j01…0i þ � � � þ αnj00…1i: ð7Þ

Note that the number of parameters grows linearly with the
number of qubits. Moreover, the fidelity to a target in this
class can be estimated efficiently [4,5]. But if we actually
want to learn the state we are faced with a new problem: the
actual true state might not lie in this subclass. Using SGQT
with fidelity estimation we can, however, efficiently find
theW-class state with highest fidelity to the true state. This
points to both the robustness of SGQT and efficacy of
solving the problem of finding the “closest” state within a
desirable subclass. The performance of SGQT for this
problem is demonstrated in Fig. 4, where SGQT is shown to
find the highest fidelity W-class state to a randomly
generated mixed state. The mixed state is generated by
first Haar randomly choosing aW state, then subjecting it to
5% depolarizing noise. Fits to Oð1=kγÞ asymptotic scaling
for each qubit number lie in γ ∈ ð0.95; 1.03Þ, in line with
the optimal performance. Separately fixing k and fitting the
infidelity toOðdηÞ (shown in the inset of Fig. 4) gave values
η ∈ ð1.41; 1.53Þ. Since d ¼ 2ðn − 1Þ, this is efficient in n.
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FIG. 3 (color online). The infidelity vs the number of iterations
k achieved by SGQT for states of increasing qubit number
(shown on the right). The number of experiments per
fidelity estimate for all cases was N ¼ 104. Each line is the
median performance of SGQT over 100 randomly (according
to Haar measure) chosen pure states, where the initial guess
was a random perturbation of 0.01 standard deviation in
each dimension of the parametrized space (this was done to
more efficiently extract the asymptotic scaling). The shaded
regions represent the interquartile range of infidelities. The
inset shows the performance as a function of the number of
qubits for fixed values of k as marked. The SGQT parameters
used for these simulations (and all further simulations) were
a ¼ 0.3, A ¼ 1000, and b ¼ 0.1.
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FIG. 4 (color online). The rescaled infidelity (difference be-
tween the minimum achievable infidelity and actual infidelity) vs
the number of iterations k achieved by SGQT for W states of
increasing qubit number (shown on the right). Parameters are as
in Fig. 3.
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Finally, we show that SGQT is robust to small amounts
of measurement errors, which is a part of the ever-present
state preparation and measurement (SPAM) error problem.
In Fig. 5, we demonstrate the robustness of SGQT to
measurement errors for W-state estimation, where the
measurement error is simulated by randomly perturbing
the measurement target state with zero-mean Gaussian
noise with a (quite high) standard deviation of 0.1. The
convergence is slower than noiseless measurements with
fits giving γ ∈ ð0.48; 0.59Þ. However, the convergence
demonstrates that SGQT is robust to both statistical and
technical measurement noise.
So SGQT works, but in what sense is it more efficient

than standard quantum tomography (SQT)? There are four
things to consider: (1) how the infidelity scales with the
total number of copies (here Ntot) of the system and the
dimension (d); (2) the total number of different measure-
ment directions; (3) the space complexity (number of real
numbers to store); and (4) the computational time required
to arrive at the final estimate.
Asymptotic arguments relate fidelity to Euclidean dis-

tance on some parameterization of pure states which
transform the problem into one with a known solution
from classical statistics [9]. The infidelity of estimating
pure states is at least Oðd=NtotÞ and can be achieved by
maximum likelihood estimation SQT. The extracted scaling
of SGQT is slightly worse giving Oðdη=NtotÞ with η > 1.
Noting that the implementation of the SGQTalgorithm was
written with a single line of code and a static set of
algorithmic parameters, we think it is quite good for a first

investigation in self-learning algorithms. With more sophis-
ticated numerical algorithms, we conjecture that self-
learning approaches can achieve Oðd=NtotÞ and with
hopefully less effort than has been put into the theoretical
analysis of tomography.
The total number of measurement directions for SGQT is

OðNtotÞ, whereas for tomography it is a free parametermtot.
For informationally complete tomographymtot ¼ OðdÞ, but
overcomplete measurement sets are often considered.
Finally, where SGQT can provide substantial improve-
ments in efficiency is in the computational complexity of
calculating the estimator. The amount of storage required
for tomography is at leastOðmtotdÞ, the number of elements
in a measurement consisting of rank-1 elements times the
space required to store each element. Since SGQT is online,
it forgets the past measurements and only requires OðdÞ
storage space. To actually compute an estimator from a data
set requires at least Oðmtotd2Þ time (the complexity of
linear least squares regression), with more sophisticated
techniques (such as maximum likelihood) taking much
longer. Since SGQTends with an estimate of the state, there
is no computation needed—an enormous advantage. These
considerations are summarized in Table I.
Here we have considered examples of pure state tomog-

raphy using infidelity since it has a clear-cut interpretation
and is a standard error metric. We reiterate that SGQTwill
work with any distance metric so long as it is estimable via
experiment. The only caveat is that the efficiency of SGQT
is directly related to the efficiency with which the distance
can be estimated. For example, in direct fidelity estimation
[4,5], only certain classes of states can be validated in an
efficient way, such as our W-state example. If only a
subclass of states is considered, SGQTwill converge to the
nearest state within that subclass, as we have demonstrated
with W states. We have also shown that SGQT is robust to
certain forms of SPAM errors. In the sameway as for states,
SGQT can be used to find quantum channels where
randomized benchmarking [10,11] can be used to effi-
ciently estimate the fidelity to certain classes of unitaries.
Finally, we note that to further mitigate the issues of
complexity, it may become viable in the future to aid
the estimation of the distance measure with quantum
resources [12,13], such as the swap test [14].
In summary, we have provided an experimental protocol

to learn quantum states without the need for classical
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FIG. 5 (color online). The infidelity vs the number of iterations
k achieved by SGQT forW states of increasing qubit number. For
each fidelity estimation measurement, an unknown zero-mean,
0.1 standard deviation, Gaussian random perturbation was
applied to the target state. All other parameters are as in Fig. 3.

TABLE I. Summary of the trade-off in complexities for SGQT
and SQT (standard quantum tomography). Numerical fits here
give η > 1, but it is conjectured that η ¼ 1 is achievable with
optimized choices on gain sequences fαkg and fβkg.

Infidelity Measurements Space Time

SQT Oðd=NtotÞ mtot OðmtotdÞ Oðmtotd2Þ
SGQT Oðdη=N totÞ OðNtotÞ OðdÞ OðdÞ
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reconstruction—that is, the quantum system guides itself to
a description of its own state. Using ideas from stochastic
optimization theory and the direct estimation of fidelity, we
have shown that certain classes of states can be learned
efficiently in an iterative experimental protocol which ends
with the experiment determining its own state. This result
demonstrates that the standard, and prohibitive, paradigm
of first collecting massive amounts of data, then solving the
inverse problem of state estimation is unnecessary. Perhaps
with an eye to the future, the approach considered here is a
step toward quantum learning, in which autonomous
quantum machines learn and manipulate their environment
without the need of a human operator.
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