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The Berry curvature is a geometrical property of an energy band which acts as a momentum space
magnetic field in the effective Hamiltonian describing single-particle quantum dynamics. We show how
this perspective may be exploited to study systems directly relevant to ultracold gases and photonics. Given
the exchanged roles of momentum and position, we demonstrate that the global topology of momentum
space is crucially important. We propose an experiment to study the Harper-Hofstadter Hamiltonian with a
harmonic trap that will illustrate the advantages of this approach and that will also constitute the first

realization of magnetism on a torus.
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The Hamiltonian of a charged particle in an electromag-
netic field is a familiar and fundamental result in quantum
mechanics [1]. In this Hamiltonian,

[p—eA(r)?

H="—

+ ed(r), (1)

the roles of momentum and position are inherently asym-
metric; the magnetic vector potential, A(r), is a function of
position which redefines the relationship between the
canonical, p, and physical, p —eA(r), momenta. The
vector potential A(r) is also responsible for the geometric
Aharanov-Bohm phase, which depends on the real-space
trajectory of a particle.

The magnetic Hamiltonian has an important momentum
space counterpart,

H = E(p) + W(r+ A(p)). (2)

that underlies many intriguing phenomena in solid state
physics such as the anomalous [2—4] and spin Hall effects
[5-7] as well as peculiar features of graphene [8,9] and bulk
Rashba semiconductors [10]. In this formalism, E(p) is the
energy dispersion of the band under consideration, while
A(p) is the geometrical Berry connection of the band
(defined below) [2,6,11]. The Berry connection acts as a
momentum space vector potential, redefining the relation-
ship between the canonical, r, and physical, r + .A(p),
position operators appearing in the external potential term
W(r+ A(p)). This replacement has important physical
consequences that have been studied primarily, so far, at the
semiclassical level [2,3,5-7,12,13]. As in the Aharanov-
Bohm effect, a particle moving in momentum space under
the influence of an external force gains a geometrical
Berry phase due to the connection .A(p). The curvature,
Q(p) = V, x.A(p), also naturally defines a momentum
space magnetic field [6,11,14,15].
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Local geometrical properties of energy bands can be
related to global topological invariants. For example, the
simplest topological invariant of a 2D crystal, the so-called
Chern number C, is the integral of the Berry curvature over
the first Brillouin zone (BZ). In the analogy with magnet-
ism, the Chern number is the momentum space counterpart
of the number of magnetic monopoles [16] inside a torus.
This important invariant underlies the quantization of
conductance in the quantum Hall effect [17], while other
topological invariants can be defined to classify topological
insulators [18,19].

In the last few years, geometrically nontrivial bands have
been created in ultracold gases [20-23] and photonic
systems [24-27]. Nonzero Q(p) can have consequences
for the collective modes of an ultracold atomic gas [28,29]
and for the semiclassical dynamics of a wave packet
[30-35], while the hallmarks of nontrivial topological
bands have been observed in topologically protected
photonic edge states [24-26].

In this Letter, we discuss how the momentum space
magnetic Hamiltonian [Eq. (2)] can be exploited as a fully
quantum theory to understand the quantum mechanics of
single particles in energy bands with nontrivial geometrical
and topological properties, in the presence of additional
external potentials. To illustrate this most clearly, we focus
on the example of a two-dimensional system where the
energy and the Berry curvature of the lowest band are
nearly flat over the first BZ. In the presence of an external
harmonic potential, the equispaced eigenstates are then the
momentum space counterpart of Landau levels in a con-
stant magnetic field. Remarkably, these eigenstates have
novel features directly stemming from the global toroidal
topology of the BZ. The recent experimental realizations of
the Harper-Hofstadter model in ultracold gases [22,23],
photonic systems [26], and solid-state superlattices
[36] suggest a prompt experimental implementation of
our approach. This would open up new avenues to exper-
imentally investigate quantum mechanics and quantum
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magnetism on a topologically nontrivial manifold such as a
torus [37,38].

The effective quantum Hamiltonian.—We start by pre-
senting a short derivation of the momentum space magnetic
Hamiltonian [Eq. (2)] in modern terms for systems of
current experimental interest. Our derivation builds on
ideas over the last 60 years [2,11,39] and is applicable
to the generic single-particle Hamiltonian, H = Hy+
W(r), whose first term, H,, is either translationally
invariant or periodic in real space. For example, H, could
refer to an electron in a crystal, an atom with spin-orbit
coupling, an ultracold atomic gas in an optical lattice, or
light in either a photonic crystal or a lattice of coupled
resonators or waveguides. The second part of the
Hamiltonian, W(r), is a weaker additional potential. This
could be, for instance, an external static electric field for an
electron, a harmonic trap or optical superlattice potential
for atoms, or a slow modulation of the background
refractive index and/or of the cavity size in optical systems.

The eigenfunctions of H, are [y, ,(r)) = (e?*/
V/V)|np), where |np) is the energy eigenstate for band
index n and momentum p, and V is a normalization factor.
If H, is periodic, the eigenstate is the periodic Bloch
function, u,, ,(r), and the momentum is the crystal momen-
tum defined in the BZ (we take 7 = 1 throughout). The
normalization, V, is the number of lattice sites, N. If instead
H, is translationally invariant, the eigenstate |np) is
independent of position and V is the volume of the system.
For simplicity, we focus on two dimensions, although the
extension to 3D is straightforward.

The energy bands have a band structure, E,(p), and
geometrical properties encoded in the Berry connection,
A, (p), and Berry curvature, Q,(p) [11,40]:

) R
A,(p) = i<npl% Inp), Q,(p) =V, x A,(p) -2

The additional potential, W(r), mixes different eigenstates,
|np). We expand the eigenstates of the full Hamiltonian,
M. as [ ) = 5, 5, 11, (p)\2sp)- where v, (p) are expan-
sion coefficients. For a periodic H,j, this sum is taken over
the first BZ, otherwise, the sum runs over all momenta. We
substitute into the Schrodinger equation, i(0/01)|¥) =
H|¥), and apply (¥, |, to obtain:

0

lal//n<p) = En (p)l//n(p) + Z@n’,p"w(r) |)(np>l//n(p)

We expand W(r) as a power series in r, and repeatedly
insert the completeness relation: 1=73", >, [¥, ) (Xnpl
(demonstrated explicitly in the Supplemental Material [41]
for a harmonic trap). Then we can use the identity:

. ) 0
O(n’,p’|r|)(n,p> = 5p,p’ <5n,n’lvp + l<n/p/| a_p |”p>> ,

which we have generalized from a previously known result
[2,39]. We assume that the additional potential is suffi-
ciently weak that it does not significantly mix energy bands
and that the contribution from only one band n is non-
negligible. A quantitative condition for this approximation
will be discussed in the following. The effective quantum
Hamiltonian in the single-band approximation then has the
form [Eq. (2)] with the suitable E,(p) and A,(p). Of
course, this Hamiltonian may be generalized to systems
with degeneracies such as graphene and topological insula-
tors [18,19]; then, the effective momentum space magnetic
field has a non-Abelian gauge structure [6,45].

Connections with magnetism.—The duality between
momentum space magnetism and real space magnetism
is transparently demonstrated by comparing the effective
Hamiltonian [Eq. (2)] to the textbook magnetic
Hamiltonian [Eq. (1)]. The energy bandstructure, E,(p),
acts like the external scalar potential e®(r), while the
external potential W[iV, + .4, (p)] corresponds to the
“kinetic energy”, (1/2M)[p —eA(r)]> [46]. For a har-
monic trapping potential, W(r) =1«r? the effective
Hamiltonian [Eq. (2)] is:

H= )+ T ARE

where the inverse trapping strength, k! acts as the particle
mass, M. (This is further illustrated in the Supplemental
Material [41] for the toy model of a harmonic trap in an
optical lattice without a momentum space magnetic field.)
We focus hereafter on W(r) = «r?, but other forms of the
energy-momentum relationship in the real space magnetic
Hamiltonian could be obtained by applying different types
of external potential, W(r).

The topology of momentum space.—The global proper-
ties of the Berry connection and curvature have been deeply
investigated as they are related to topological invariants,
underlying, for example, the quantum Hall effect [17].
However, much less attention has been devoted to the
impact of the global topology of momentum space on the
particle wave function which must be single valued [1].
This condition is irrelevant when the momentum p can take
arbitrarily large values, e.g., for particles with 2D Rashba
spin-orbit coupling in a Zeeman field [29], but has very
interesting consequences in spatially periodic systems
where the momentum is defined over the BZ, which has
the topology of a torus. As a concrete example of this, we
investigate the Harper-Hofstadter Hamiltonian [48] with an
external harmonic trap; this is a natural extension of recent
experimental advances [22,23,26,36].

The Harper-Hofstadter ~model.—In the Harper-
Hofstadter model, a particle hops on a 2D lattice in a
perpendicular (real or artificial) magnetic field, B = BZ.
In the Landau gauge, A(r) = Bxy, the tight-binding
Hamiltonian with a harmonic trap is:
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FIG. 1 (color online). The numerical energy spacing relative to
the lowest eigenvalue, Sy, for the lowest 100 states, obtained by
diagonalizing Eq. (4) for ka®/J = 0.02 and a lattice with N =
41 x 41 sites. The energy spacing is multiplied by a to highlight
the spacing of toroidal Landau levels in the lowest band.

1
H = HO + zKazz(Wﬂ + l’lz)&jn,n&m_n,
m,n

Ho=—I> (@)1 pamn + €2, 18,,) +He,  (4)

m,n

where H,, is the Harper-Hofstadter Hamiltonian, J is the
hopping amplitude, a is the lattice spacing, and the &fn,n
(a,,,) operators create (annihilate) a particle at lattice site
(m, n). The hopping along ¥ is modified by a complex
phase ¢ = 2zama, where « is the number of magnetic flux
quanta per plaquette of the lattice.

Without a harmonic trap, the eigenstates are those of the
Harper-Hofstadter Hamiltonian, with behavior governed by
the value of a. When a = p/g, the tight-binding band splits
into ¢ magnetic subbands. The energy spectrum is the well-
known Hofstadter butterfly [48]. The magnetic vector
potential, A(r), is not periodic, and the usual translation
operators do not commute with H,, [31]. To apply Bloch’s
theorem, we define new magnetic translation operators and
a larger magnetic unit cell of g plaquettes, that contains an
integer number of magnetic flux quanta. The Bloch states
are then magnetic Bloch states defined within the magnetic
Brillouin zone (MBZ): —z/a < p, < n/a and —zn/qa <
p, < m/ga (for a magnetic unit cell of ¢ plaquettes along
X) [31].

Numerical calculations with a harmonic trap.—Adding
a harmonic trap splits the Harper-Hofstadter bands into a
complicated structure first noted in Ref. [49] and replotted
here in Fig. 1 in terms of the energy level spacing relative to
the lowest numerical eigenstate. For each value of «, the
spectrum was obtained by numerically diagonalizing the
full Hamiltonian [Eq. (4)]. The only significant error is
from the restriction of Eq. (4) to a finite lattice. To control
this, we ensure that all energies are converged to within
the accuracy shown. Numerical diagonalization also gives
the real space eigenstates of Eq. (4); we relate these to the
population in the MBZ via a procedure described in the
Supplemental Material [41].

Analytical interpretation.—To understand the compli-
cated spectrum, we build a simple model, focusing on

a = 1/q < 1, where our interpretation is the clearest. In
this regime, we can make two simplifications; firstly, with
decreasing @ = 1/¢, the bands flatten compared to the
hopping energy J. If the bandwidth is much smaller than
the harmonic trapping energy, we can assume E,(p) = E,,,
contributing only an overall energy shift. Secondly, when
a=1/q and ¢ is odd, the Chern number of each band,
except the middle band, is —1. For a < 1, the Berry
curvature of these bands is increasingly uniform, Q, (p) =
Q, [33,50,51]. The average value, |Q,| = a*/(27a), is
estimated by noting that the Chern number: C, =
(1/27)Q,Agz = —1, where Agy = (27)%/qa’ is the area
of the MBZ [29]. Therefore for ¢ = 1/g < 1, the effective
Hamiltonian [Eq. (2)] describes a particle in a uniform
magnetic field on a torus in momentum space, with an
additional overall energy shift.

From the duality between real space and momentum
space magnetism, we can translate known analytical results
for Eq. (1) to find the eigenspectrum and eigenstates of
Eq. (2) [41]. In a real space uniform magnetic field, the
eigenstates are Landau levels [1]. Restricting the particle to
the surface of a torus, the infinitely degenerate Landau
levels are superposed to satisfy the appropriate boundary
conditions [37,38].

Including the different Harper-Hofstadter bands, the
resulting eigenspectrum of our model can be summarized
as a collection of intertwined semi-infinite ladders,

1
Eup = Bt |p+5]xi001 5

Each ladder starts at the energy E,, of the band. Within each
ladder, the states are classified by the Landau level quantum
number = 0, 1,2, ... and their constant spacing is set by
the analog «|Q,| of the cyclotron frequency @, = e|B|/M.
This is the well-known Landau level spectrum, unaffected
by the toroidal topology. However, the topology does
reduce the degeneracy of states from an infinite to a finite
number, equal to the number of magnetic flux quanta inside
the torus [37]. Counting this degeneracy may provide
another experimental tool to directly measure the Chern
number of nondegenerate bands.

We also translate toroidal Landau levels from real space
[38] to the MBZ to find the expected analytical eigenstates
(Supplemental Material [41]). The Landau levels are
strongly affected by global topology as, for example, their
form depends on the Chern number, and the toroidal
boundary conditions break translational symmetry in
momentum space.

Comparison of numerical and analytical eigenspec-
tra.—Our analytical interpretation is confirmed by
numerics, as shown in Fig. 1 over a suitable range of a.
Landau levels in the lowest band are spaced by k|Q,| =
ka’/(2ra) [Bq. (5)]. Multiplying by «, this energy spacing
is a constant (equal to =0.003J for xa?/J = 0.02).
Numerically, this behavior is represented by the almost
flat, equispaced states that are visible in Fig. 1 around
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a = 0.1. The level spacing was noted in Ref. [49] but its
origin was not discussed. The eigenstates are nondegener-
ate as |Cy| = 1.

At higher energies in Fig. 1, a second ladder of states cuts
across the first. These can be identified as Landau levels in
the second lowest Harper-Hofstadter band. (As the spacing
is calculated relative to &, only states from the lowest
Harper-Hofstadter band are horizontal.) The strength of
anticrossings between different states is controlled by band
mixing from the external harmonic trap. For a sufficiently
weak trap and a large band gap, the single-band approxi-
mation is valid and levels originating from different bands
freely cross without significant coupling. This describes,
for example, ka®/J = 0.02 at a = 1/11, where the band
gap is (E; — Ey)/J =1, and the effective Hamiltonian
applies to each band separately. The breakdown of
this behavior for a stronger trap is discussed in the
Supplemental Material [41].

As a — 0, the Harper-Hofstadter bands become too
close and band mixing is important. In this limit, the
energies are those of a 2D simple harmonic oscillator on a
tight-binding lattice [49]. As this is independent of a,
the numerical quantity plotted in Fig. 1 vanishes for all
states. In the opposite limit, as o 2 0.2, the energy spacing
becomes distorted as we can no longer approximate Q,, (p)
and E,(p) as uniform: two assumptions which simplified
the effective Hamiltonian.

Note that although our analytics are restricted to
a = 1/q, numerically, the spectrum continuously depends
on a. The analytical explanation of this in the general p > 1
case requires application of the magnetic model to (almost)
degenerate bands with non-Abelian Berry connection,
which will be the subject of a future publication.

Comparison of numerical and analytical eigenstates.—
Figure 2 shows the 9th and 48th numerical states in real
space (a) and (c), and as a population over energy bands in
the MBZ (b) and (d). The latter are in excellent agreement
with the analytical § = 8 toroidal Landau level in the
n =0, 1 Harper-Hofstadter bands, as demonstrated quan-
titatively in Fig. 2(e). This agreement supports the single-
band approximation, as our analytical wave function is able
to capture all numerical features.

The population in the MBZ is mostly determined by the
Landau level quantum number f, with a number of nodes
that appears to increase with S as expected. The population
is also nearly identical in the two bands [see panels (b) and
(d)]. Conversely, the real space wave functions, shown in
panels (a) and (c), are markedly different, for example, with
more nodes as the band index, n, increases. This difference
is because the real space states depend on the n via the
Bloch wave functions u,, ,(r).

Experimental considerations.—We observe that the
form of the Landau levels is remarkably robust to parameter
variation, making our proposal well suited to experimental
investigation. According to our numerics, the basic features
of the lowest energy toroidal Landau levels survive up to
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FIG. 2 (color online). The top (middle) row is the 9th (48th)
lowest eigenstate of Eq. (4) for a = 1/11, ka*/J = 0.02, and a
lattice of N = 133 x 133 sites. (a) and (c) The numerical wave
function, |y (r)|, in units of a~'. (b) and (d) The numerical
population over bands in the MBZ in units of a. (b) and (d) are
qualitatively indistinguishable from the analytical § = 8 toroidal
Landau level, yg(p), in the lowest and second lowest Harper-
Hofstadter band, respectively. In both bands, |Q| = a?/(27a) and
toroidal Landau levels have the same form (Supplemental
Material [41]). (e) Quantitative comparison along p, = 0 taken
from (b),(d), and the analytical f = 8 level.

a = 1/3, provided that the harmonic trapping strength is
larger than the bandwidth of the lowest band. Importantly,
these results are also very insensitive to lattice size, due to
strong localisation of the low energy eigenstates in
real space (Fig. 2). This is because toroidal Landau levels
vary over a large -characteristic momentum scale,

lo, = +/1/|%,|, which depends only on a and C,, and
which is the analogue of the “magnetic length”,

Iz = \/1/e|B|. For relevant parameters here (as well as
typical parameters in more general systems), the wave
function is delocalized in momentum, and hence, localized
in real space (Supplemental Material [41]).

To realize the proposed experiment, a harmonic trap can be
straightforwardly added to an ultracold gas using additional
laser beams and/or magnetic fields. The momentum space
eigenstate structure can be probed directly in time-of-flight
measurements of the momentum distribution when both the
lattice and artificial magnetic field responsible for the com-
plex hopping terms in [Eq. (4)] are suddenly switched off.
While the real space wave function [Figs. 2(a) and 2(c)] is
independent of the magnetic gauge choice, the momentum
space wave function is not. However, in this experimental
procedure, the canonical momentum is measured directly as
the physical momentum in the final time-of-flight expansion

190403-4



PRL 113, 190403 (2014)

PHYSICAL REVIEW LETTERS

week ending
7 NOVEMBER 2014

stage [22,23,52]. In photonics, similarly, a harmonic potential
can be created in the cavity arrays of Refs. [26] and [27] by
letting the cavity size vary spatially, while the real (momen-
tum) space wave function can be extracted from the near-field
(far-field) emitted light [27,53].

Summary.—We have introduced how future experiments
may use external potentials and geometrical energy bands to
design novel magnetic Hamiltonians in momentum space. As
a first step, we have shown how a particle in a uniform
magnetic field confined to a torus may be realized exper-
imentally. The global toroidal topology has important
consequences, for example, in the degeneracy of the eigens-
pectrum, in the spontaneous breaking of translational sym-
metry in momentum space and in the form of eigenstates.

We are grateful to N. R. Cooper for helpful comments
and to P. Ghiggini for mathematical support. This work was
partially funded by ERC through the QGBE grant and by
the Autonomous Province of Trento, Call “Grandi Progetti
2012,” project “On silicon chip quantum optics for quan-
tum computing and secure communications - SiQuro”.
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