
Comment on “New Limit on Lorentz-Invariance- and
CPT-Violating Neutron Spin Interactions Using a Free-
Spin-Precession 3He-129Xe Comagnetometer”

In Ref. [1], the authors use a classical result for the
magnetic field created by a uniform magnetization to
analyze the effects of magnetic interactions between 3He
and 129Xe nuclear spins. We point out that the classical
result is not applicable for interaction between nuclear
spins: the actual interaction is much weaker. This calls into
question the results of their analysis setting limits on
Lorentz invariance. We also point out that the Letter does
not contain any discussion of systematic errors in the
determination of Lorentz-violation coefficients.
In Ref. [1], 3He and 129Xe nuclear-polarized gases are

contained in a spherical cell. Magnetic fields created by the
polarized spins lead to their mutual interactions and modify
their precession frequencies. To include these effects in the
analysis, the authors assume that the field B inside a
spherical cell due to a uniformly polarized gas with a
magnetization M is given by

B ¼ 2μ0
3

M: ð1Þ

This classical result is given, for example, in Ref. [2]. It can
be obtained from a classical expression for the magnetic
field created by a magnetic dipole moment m,

BðrÞ ¼ μ0
4π

3r̂ðr̂ ·mÞ −m
r3

þ 2μ0m
3

δðrÞ; ð2Þ

by integrating the field over a sphere with a uniform density
of dipoles n ¼ M=m. The integral of the first term in
Eq. (2) over a sphere vanishes. Fluctuations of the field due
to a random distribution of atoms in the sphere have a zero
mean for real atoms with a finite size [3,4].
The second term in Eq. (2) gives the classical expression

(1), but it is only valid if the spins are completely
noninteracting and their density nðrÞ near each other
remains uniform. In real systems, like gases, the spin
interaction Hamiltonian becomes H2 ¼ 2μ0m1 ·m2n1ðr1−
r2Þδðr1 − r2Þ=3. For interactions between electron and
nuclear spins, it is parametrized by a factor κ [5],

B ¼ 2μ0
3

κM; ð3Þ

with the value of κ ≡ nð0Þ=nð∞Þ ranging from a few to a
few hundred for various pairs of alkali-metal and noble-gas
atoms due to the attractive interaction between the valence
electrons and the noble gas nuclei.
For interactions between nuclear spins κ ¼ 0 to first

order [6], since during atomic collisions the overlap of the
nuclei remains strictly zero, nð0Þ ¼ 0. A finite effect can be
generated by a second-order-electron Fermi-contact

interaction in van der Waals molecules [7]. It is quite
small and was only recently observed experimentally [8],
giving κ ¼ −0.0014 for a solution of liquid 129Xe and 1H in
pentane. For a 3He and 129Xe gas mixture we expect an
even smaller contribution from van der Waals molecules.
Deviations of the cell from a spherical shape can also

generate a finite κ [9]. In glass-blown spherical cells, we
typically find κeff ranging from −0.01 to −0.02. In these
measurements we use 1.9 cm diameter cells containing 0.8
to 5.5 atm of 3He gas, several torr of 129Xe and Rb vapor
heated to 120 °C. We measure the 129Xe precession
frequency while the 3He polarization remains parallel or
antiparallel to the bias field, so the 129Xe frequency has a
first-order sensitivity to κeff . The size as well as the sign of
κeff depends on the orientation of the cell relative to the
magnetic field. The fact that experimental data in Ref. [1]
appear to be consistent with κ ¼ 1 indicates that another
source of frequency shift is likely to be present.
In conclusion, Eq. (1) greatly overestimates, likely by

nearly 2 orders of magnitude, the magnetic interaction
between nuclear spins. This calls into question the inter-
pretation of the experimental results in Ref. [1], which also
lacks substantive studies of systematic errors in Lorentz-
violating coefficients. The systematic checks typically
performed in similar experiments include splitting the
Lorentz-violation data into several independent subsets,
with different directions of magnetic field, different spin
polarizations, different cells, etc., to check for consistency
of the central values obtained from independent data
subsets and for reliability of error estimates.
In their Reply [10] the authors show the Allan standard

deviation for run j ¼ 6, the same as in Fig. 2 of Ref. [1].
One can notice that for some other runs in Fig. 1(b) of
Ref. [1], particularly runs 2 and 7, the phase deviations do
not follow pure Gaussian noise.
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