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A generalized master equation (GME) governing quantum evolution of modular exciton density (MED)
is derived for large scale light harvesting systems composed of weakly interacting modules of multiple
chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum
dynamics calculations of small length scales into dynamics over large length scales, and also provides
a non-Markovian generalization and rigorous derivation of the Pauli master equation employing
multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of
the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over
coupled chromophores can be accurately described by transitions between subgroups (modules) of
delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light
harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to
investigate large scale exciton dynamics in complex environments.
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Most photosynthetic units of bacteria and higher plants
have modular structures where the entire systems are
composed of smaller subunits, or “modules” of protein-
chromophore complexes [1,2]. While the nature of inter-
actions and quantum dynamics within each module varies,
the intermodule interactions in such systems are generally
weak. A striking characteristic is that excitons can migrate
through those weak links and find their destinations with
near unit efficiency within picoseconds. How can this be
accomplished despite significant disorder and fluctuations?
What are the general conditions ensuring such high
efficiency of natural systems? Recent theoretical studies
provide some clues [3–7], but the answers for the above
fundamental questions are far from being settled. To this
end, simulation of exciton dynamics over larger length
and longer time scales including realistic effects of disorder
or fluctuations is needed. However, accurate quantum
dynamical calculations typically apply to small (∼7 chro-
mophores) [8,9] or medium range systems having up to
∼30 chromophores [10–13], with the latter already requir-
ing massive computational resources. Thus, application of
such an approach to simulation of complexes with hun-
dreds of chromophores (e.g., photosystem II) also while
averaging over a sufficiently large ensemble of disorder is
impractical at present. Instead, the Pauli master equation
(PME) is frequently used for such calculations [14–20],
but without clear derivation of its kernels from quantum
dynamical principles. As such, it is difficult to establish a

connection between the observed phenomenology and the
key microscopic features.
In this work, we derive a generalized master equation

(GME) for the time evolution of the exciton density coarse
grained over a module, i.e., the modular exciton density
(MED). The resulting GME-MED complements a recent
analysis of coherence propagation between weakly coupled
multichromophore units [6], clarifies assumptions under-
lying the use of multichromophoric Förster resonance
energy transfer (MC-FRET) rate [3,21,22] in a PME,
and provides its non-Markovian generalization. We also
demonstrate that the GME-MED serves as a practical
means to incorporate high level intramodule quantum
calculations into energy transfer simulation over signifi-
cantly longer length scales.
Consider a total Hamiltonian given by H ¼ H0 þHc,

where H0 represents noninteracting modules of excitons
plus their environmental degrees of freedom and Hc the
couplings between different modules. Each module is
denoted as n or m, and a chromophore in the nth module
is denoted as jn, kn, etc. Thus,

H0 ¼
X
n

Hn ¼
X
n

�
He

n þ
X
in;jn

Binjn jinihjnj þHg
n

�
; ð1Þ

with He
n the single exciton Hamiltonian of the nth module,

jini the site excitation state of the inth chromophore in
the nth module, Binjn the bath operator coupled to the
excitonic term jinihjnj, and Hg

n the bath Hamiltonian (the
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Hamiltonian in the ground electronic state) of the nth
module. The intermodule coupling Hamiltonian has the
form

Hc ¼
X
n;m

X
jn;km

Jjnkm jjnihkmj; ð2Þ

where Jjnkm is assumed to be real and symmetric. By
definition, Jjnkm ¼ 0 for n ¼ m. For generality, we assume
that He

n, Binjn , and Hc are time dependent (although not
shown explicitly) but that Hg

n is time independent. Figure 1
provides a schematic modular structure.
Wedenote the timeevolutionoperator for the interactionfree

Hamiltonian H0 as U0ðt;t0Þ¼ expðþÞf−i
R
t
t0 dτH0ðτÞ=ℏg¼Q

nUnðt;t0Þ, where Unðt; t0Þ ¼ expðþÞf−i
R
t
t0 dτHnðτÞ=ℏg

with the subscript (þ) implying chronological time order-
ing. Assuming that the exciton is created at time t ¼ 0,
we shall abbreviate U0ðt; 0Þ and Unðt; 0Þ as U0ðtÞ and
UnðtÞ. The total density operator is denoted as ρðtÞ.
In the interaction picture with respect to H0, ρIðtÞ ¼
U†

0ðtÞρðtÞU0ðtÞ evolves according to ∂ρIðtÞ=∂t ¼
−i½Hc;IðtÞ; ρIðtÞ�=ℏ ¼ −iLc;IðtÞρIðtÞ, where Hc;IðtÞ ¼
U†

0ðtÞHcU0ðtÞ. The second equality defines Lc;IðtÞ. The
ground state time evolution operator of the nth module is
denoted as Ug

nðtÞ ¼ expf−itHg
n=ℏg. Since jjni represents

the state where only the jnth chromophore in the nth
module is excited while all other modules are in the ground
electronic state, hjnjU0ðtÞ¼ðQm≠nU

g
mðtÞÞhjnjUnðtÞ. Thus,

Hc;IðtÞ ¼
X
n;m

X
jn;km

JjnkmT jnkmðtÞ ¼
X
n;m

F nmðtÞ; ð3Þ

where T jnkmðtÞ ¼ U†
nðtÞUg

nðtÞjjnihkmjUg†
m ðtÞUmðtÞ and the

second equality defines F nmðtÞ. By definition, F nmðtÞ
vanishes for n ¼ m. We denote the identity operator in the
single exciton space of each module as 1n ¼

P
jn jjnihjnj

and that in the total single exciton space as 1 ¼ P
n1n.

The equilibrium bath canonical density operator of

the nth module in the ground electronic state is
ρbn ¼ e−βH

g
n=Trbfe−βH

g
ng.

The key idea in deriving the GME-MED is to introduce
the following modular projection superoperator P:

Pð·Þ ¼
X
n

ρbCn
TrbCn

f1nð·Þ1ng; ð4Þ

where ð·Þ represents an arbitrary operator, ρbCn
¼Q

m≠nρbn,
and TrbCn

represents the trace over all baths except for those
associated with the nth module. The superoperator P
projects the total density operator into an independent
sum of blocks, each representing a module, and satisfies the
required condition of P2 ¼ P. It also satisfies the identity
PLc;IðtÞP ¼ 0 [see Supplemental Material [23]]. We
assume a simple initial condition at time t ¼ 0 with no
intermodule quantum coherence because the likelihood
of such a coherent state under natural condition is very
small, so that ð1 − PÞρIð0Þ ¼ 0. Then, from the well-
known formal solution for PρIðtÞ (see [23]), it is easy to
derive the following time evolution equation for the total
nth module density operator, ρn;IðtÞ ¼ TrbCn

f1nρIðtÞ1ng:

∂
∂t ρn;IðtÞ ¼ −

X
m

Z
t

0

dτ1nTrbCn
fLc;IðtÞ

× e
−i
R

t

τ
dτ0ð1−PÞLc;Iðτ0Þ

ðþÞ Lc;IðτÞρbCm
ρm;IðτÞg1n;

ð5Þ

which is formally exact but not amenable for practical
solution yet. Under the assumption that the intermodule
coupling Hc is small compared to H0, the approximation

e
−i
R

t

τ
dτ0ð1−PÞLc;Iðτ0Þ

ðþÞ ≈ 1 can be made in Eq. (5). This results

in the following second-order approximation with respect
to Hc:

∂
∂t ρn;IðtÞ ¼ −

X
m

Z
t

0

dτ

× 1nTrbCn
fLc;IðtÞLc;IðτÞρbCm

ρm;IðτÞg1n: ð6Þ

The above equation provides a complete prescription to
incorporate full quantum dynamics calculations for each
module (made using, e.g., the methods of [29,30]) into a
consistent description of the dynamics across all coupled
modules. Note that the only assumption invoked here is the
smallness of Hc compared to H0. This assumption can be
used as long as a natural division into weakly coupled
modules exists. This can be justified in most light harvest-
ing supercomplexes, with the possible exception of the
chlorosome of the green sulfur bacteria [31], which appears
to have an extended network of coupled chromophores.
However, even in this case, the excitons have finite
coherence lengths due to disorder or exciton-phonon

FIG. 1 (color online). Schematic of a modular system. Arrows
represent transition dipoles of each chromophore, dotted and
dashed lines their electronic couplings (within and between
complexes, respectively), and wavy lines exciton-bath couplings.
The gray region represents MED.
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couplings and application of our formalism may be feasible
in this case by appropriately choosing modules comparable
to the coherence sizes of excitons [20].
When the main focus is on the exciton states, the

equation for the reduced system density operator,
σn;IðtÞ ¼ Trbnfρn;IðtÞg, can be obtained by tracing
Eq. (6) over the bath of the nth module and employing
the explicit expression for Hc;IðtÞ of Eq. (3). The result
becomes

∂
∂tσn;IðtÞ ¼ −

1

ℏ2

X
m≠n

Z
t

0

dτðTrbfF nmðtÞFmnðτÞρn;IðτÞρbCn
g

þTrbfρbCn
ρn;IðτÞF nmðτÞFmnðtÞg

−TrbfF nmðtÞρbCm
ρm;IðτÞFmnðτÞg

−TrbfF nmðτÞρbCm
ρm;IðτÞFmnðtÞgÞ; ð7Þ

where the fact that TrbnTrbCn ¼ Trb has been used.
The integrands of Eq. (7) can be related to line shape

operators of each module. For this, we introduce the
following exciton space operators:

Inðt; τÞ ¼ TrbnfUnðt; τÞ1nρbnUg†
n ðt − τÞg; ð8Þ

Enðt; τ; ρnÞ ¼ TrbnfUg
nðt − τÞρnðτÞU†

nðt; τÞg; ð9Þ

where ρnðτÞ ¼ UnðτÞρn;IðτÞU†
nðτÞ. The Fourier transform

of Inðt; τÞ with respect to t − τ produces the absorption
line shape when contracted with transition dipole vectors.
A similar procedure with Enðt; τ; ρnÞ leads to the time-
dependent emission line shape depending on ρnðτÞ as its
initial condition. For complete representation of all the
integrands of Eq. (7), we need to define additional operators
with specific coherence information built in as follows:

In;j00nj000n ðt; τÞ ¼ TrbnfUnðt − τÞ
× ðUnðτÞjj000n ihj00njU†

nðτÞρbnÞUg†
n ðt − τÞg;

ð10Þ

En;j00nj000n ðt; τ; ρnÞ ¼ TrbnfUg
nðt − τÞ

× ðρnðτÞUnðτÞjj000n ihj00njU†
nðτÞÞU†

nðt − τÞg:
ð11Þ

Then, it is possible to show (see the Supplemental Material
[23]) that Eq. (7) is equivalent to the following time evolution
equation:

∂
∂t hj

00
njσn;IðtÞjj000n i ¼ −

1

ℏ2

X
m≠n

X
jn;km

X
j0n;k0m

JjnkmJj0nk0m

Z
t

0

dτfhkmjImðt; τÞjk0mihj0njEn;j00nj000n ðt; τ; ρnÞjjni

þ hk0mjI†
mðt; τÞjkmihjnjE†

n;j000n j00n
ðt; τ; ρnÞjj0ni − hj0njI†

n;j000n j00n
ðt; τÞjjnihkmjE†

mðt; τ; ρmÞjk0mi
−hjnjIn;j00nj000n ðt; τÞjj0nihk0mjEmðt; τ; ρmÞjkmig: ð12Þ

The GME for the MED, pnðtÞ ¼
P

jnhjnjσn;IðtÞjjni, can
be obtained by summing the diagonal components of Eq. (12)
and utilizing the fact that Inðt; τÞ ¼

P
j00nIn;j00nj00nðt; τÞ and

Enðt; τ; ρnÞ ¼
P

j00nEn;j00nj00nðt; τ; ρnÞ, yielding
∂
∂tpnðtÞ ¼ −

1

ℏ2

X
m≠n

X
jn;km

X
j0n;k0m

JjnkmJj0nk0m

× 2Re
Z

t

0

dτfhkmjImðt; τÞjk0mihj0njEnðt; τ;ρnÞjjni

−hjnjInðt; τÞjj0nihk0mjEmðt; τ;ρmÞjkmig: ð13Þ

Higher order versions of this equation can be obtained from
Eq. (5) by following similar procedures including higher than
second-order terms[25,32,33]. In the limitwhereeachmodule
consists of a single chromophore, the GME-MED reduces to
the GME for localized excitons [34,35].
Equation (13) is the main formal result of the present

Letter, but its solution requires full knowledge of the total
density operator of each module, due to the dependence
of Enðt; τ; ρnÞ on ρnðτÞ. We now describe a generic

approximation removing such dependence, which is
implicit in applications employing MC-FRET rates in
the PME [14,18,20] and is believed to be appropriate for
many natural photosynthetic systems. To simplify the argu-
ment, we shall assume that all Hn are time independent.
Then, Unðt;τÞ¼Unðt−τÞ and Inðt;τÞ¼Inðt−τ;0Þ≡
Inðt−τÞ. If the dynamics driving intramodule detailed
balance are fast compared to the intermodule population
dynamics, onemay invoke the following steady state approxi-
mation: ρnðτÞ≈ρsnpnðτÞ, where ρsn¼e−βHn=Trnfe−βHng.
This does not imply complete time scale separation between
intramodule and intermodule dynamics, and takes the full
effect of exciton-bath entanglement into consideration
through ρsn. With this approximation, Enðt;τÞ≈Es

nðt−τÞ
pnðτÞ, where Es

nðtÞ ¼ TrbnfUg
nðtÞρsnU†

nðtÞg. Equation (13)
then reduces to the following closed-form expression:

∂
∂t pnðtÞ ¼

X
m≠n

Z
t

0

dτfKn→mðt − τÞpmðτÞ

−Km→nðt − τÞpnðτÞg; ð14Þ
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where

Kn→mðtÞ ¼
2

ℏ2
Re

X
jn;km

X
j0n;k0m

JjnkmJj0nk0m

× hkmjImðtÞjk0mihj0njEs
nðtÞjjni: ð15Þ

TheGME-MEDofEq. (14) can nowbe solved employing the
predetermined kernels of Eq. (15). Alternatively, a time-local
version of Eq. (14) can also be derived following a similar
step but utilizing the cumulant expansion approach [36]. This
results in

∂
∂t pnðtÞ ¼

X
m≠n

fWm→nðtÞpmðtÞ −Wn→mðtÞpnðtÞg; ð16Þ

where Wn→mðtÞ ¼
R
t
0 dτKn→mðτÞ. In the Markovian limit

where all the intramodule exciton dynamics are much faster
than the intermodule dynamics, both Eqs. (14) and (16)
become equivalent and reduce to the PMEwith the following
MC-FRET rate [22]:

Wn→mð∞Þ ¼
X
jnkm

X
j0nk0m

JjnkmJj0nk0m

Z
dωEj0njn

n ðωÞIkmk0mm ðωÞ;
ð17Þ

where Ikmk
0
m

m ðωÞ ¼ R∞
−∞ dteiωthkmjImðtÞjk0mi andEj0njn

n ðωÞ ¼
2Re

R
∞
0 dte−iωthj0njEs

nðtÞjjni. This analysis clarifies the
assumptions involved in the use of MC-FRET in PME (see
also Ref. [37]), while also providing a non-Markovian
generalization of that approach.
As a simple demonstration of accuracy, we consider a

system consisting of bacteriochlorophylls (BChls) 1–4 in
the Fenna-Matthews-Olson (FMO) complex and its protein
bath, using parameters adopted from previous works [6,8]
and modeling them as a two-module system [Fig. 2(a)].
The exciton Hamiltonian of each module is given by
He

n ¼ E1n
j1nih1nj þE2n

j2nih2nj þΔnðj1nih2nj þ j2nih1njÞ,
for n ¼ 1; 2. Any type of spectral density for the bath can
be used for the GME-MED. However, in order to make a
comparison with the hierarchical equation of motion
(HEOM) approach [38], which is limited to the Ohmic-
Drude spectral density [6,8], we use the same spectral
density, assuming the usual site-local reorganization energy
of λ ¼ 35 cm−1 and Drude cut off at ℏωc ¼ 106 cm−1. The
resulting modular excitonic densities calculated for two
different initial conditions, one starting from j11i and the
other starting from j21i are shown in Fig. 2 as blue and red
dashed lines, respectively, at T ¼ 150 and 300 K. Although
the exciton population at each BChl is sensitive to the initial
condition and exhibits strongly coherent behavior (see
insets), the dynamics of modular exciton density is mon-
otonic and much less sensitive to the initial condition.
Employing Eq. (16), the time-dependent MED was then

calculated with two approximations for Eq. (15). The first

neglects the off-diagonal elements of exciton-bath cou-
plings in the exciton basis, while including all the diagonal
exciton-vibrational terms (GME-MED-1). The second
employs a second-order time-local quantum master equa-
tion approach neglecting initial exciton-bath coupling
(GME-MED-2). Detailed expressions are provided in the
Supplemental Material [23]. The results in Fig. 2(b) show
excellent agreement of GME-MED-1 with the correspond-
ing HEOM populations, both in the initial times and the
steady state limits. In contrast, the GME-MED-2 results are
much less accurate.
The excellent agreement of GME-MED-1 with HEOM

at both low and room temperatures suggests that non-
equilibrium effects, intermodule nonadiabatic couplings,
and intermodule quantum coherence, none of which are
fully accounted for here, have minor effects. Furthermore,
comparison with the results in the Markovian limit (not
shown) confirms that non-Markovian effects are also not
significant. On the other hand, the relatively poor perfor-
mance of GME-MED-2 demonstrates the importance of an
accurate description of the exciton-bath coupling, some of
which can be improved through nonperturbative treatment
of the initial condition through analytic continuation from
imaginary time [37]. These results illustrate the importance
of using sufficiently accurate line shape expressions for
PME calculations [14,17–20] to attain reliable accuracy.
As a further example demonstrating the capability of

GME-MED in simulating large scale systems comparable
to those studied recently by phenomenological approaches
[20,39,40], we have calculated the exciton population
dynamics between a pair of B850 rings in adjacent LH2
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FIG. 2 (color online). (a) Decomposition of the first four BChls
of FMO complex into two modules. The parameters defining
He

n and Hc (all in cm−1) are E11
¼ 12 400; E21

¼ 12 520;
E12

¼ 12 200; E22
¼ 12 310; Δ1 ¼ −87; Δ2 ¼ −53; J1112 ¼ 5;

J1122 ¼ −5; J2112 ¼ 30; J2122 ¼ 8. (b) Time-dependent popula-
tions of module 1 calculated with HEOM and with two different
approximations for GME-MED. Insets show HEOM populations
at each BChl. In all figures, numbers within parentheses represent
the site of initial excitation.
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light harvesting complexes of a purple bacterium, Rps.
Acidophila. Each ring constitutes a module containing 18
bacteriochlorophyll molecules, for a total of 36 chromo-
phores. Each B850 ring is described by a well-tested
exciton Hamiltonian and spectral density [3]. The inter-
B850 BChl electronic couplings are given by transition
dipole interactions, which is an accurate description at
the typical distances in Rps. Acidophila (≥ 2.5 nm).
Figure 3(a) shows the time dependence of exciton pop-
ulation in the donor B850 ring at three different temper-
atures calculated by GME-MED-1 (black solid lines) and
by its Markovian limit, PME with MC-FRET rates (red
dotted lines). At short times we see significant differences
between the GME-MED and MC-FRET curves, which
reflect the influence of the non-Markovian bath dynamics
in the GME-MED description compared to the Markovian
dynamics assumed in MC-FRET theory. Figure 3(b) shows
the temperature dependence of the effective forward rate
for GME-MED-1, keff ¼ PAð∞Þ=τtr, where τtr satisfies the
condition of ln½PDðτtrÞ − PAðτtrÞPDð∞Þ=PAð∞Þ� ¼ −1
(see the Supplemental Material [23]), and the Markovian
MC-FRET rate, WD→Að∞Þ. We note that the effective
rate reflecting the non-Markovian dynamics is significantly
smaller than the Markovian rate at low temperatures, but
approaches it at room temperatures and above. GME-
MED-1 is much more efficient than the HEOM approach
[10] (each calculation takes only a few seconds on a typical
desktop computer), and makes it possible to simulate
excitonic energy transfer between e.g., larger aggregates
of LH2 with incorporation of energetic disorder, a key
feature necessary to explain experimental results [41,42]
and to understand the robustness of energy transfer dynam-
ics in light harvesting systems over a broad range of
temperature.

In summary, we have presented a general derivation of a
generalized master equation describing the quantum evo-
lution of exciton density in modular materials, GME-MED,
which provides a rigorous derivation of the PME with MC-
FRET rates and also offers its non-Markovian generaliza-
tion. As a proof of principle demonstration, we showed that
this approach gives an accurate description of population
dynamics between modules in subcomplexes of FMO
within which significant electronic coherence exists. As
a further demonstration of its applicability to large scale
systems, we provided results for exciton energy transfer
between B850 units of LH2 complexes in purple bacteria
that revealed the significance of non-Markovian effects
over a range of temperatures. Taken together, these dem-
onstrations support the GME-MED approach as a novel
route to calculation of long-range transfer of excitonic
energy between modules within which electronic coher-
ence is present.
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acceptor (A) B850 units separated by the center-to-center dis-
tance of 80 Å. (a) Time-dependent exciton population at the
donor B850 unit. (b) Plot of effective forward rate keff (see text
and [23]) from donor to acceptor with temperature. The black
solid line is based on GME-MED-1 and the red dashed line its
Markovian limit rate, which corresponds to the PME with MC-
FRET rates.
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