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Signal propagation in the nonequilibrium evolution after quantum quenches has recently attracted much
experimental and theoretical interest. A key question arising in this context is what principles, and which of
the properties of the quench, determine the characteristic propagation velocity. Here we investigate such
issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum
systems, the spin-1=2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal
density matrices to the same final Hamiltonian using matrix product state methods. The spreading
velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking
data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact
that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of
“excitations” in an appropriately defined generalized Gibbs ensemble.
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The last few years have witnessed a number of signifi-
cant advances in understanding the nonequilibirum dynam-
ics in isolated quantum systems. Much of this activity has
focused on fundamental concepts such as thermalization
[1–5] or the roles played by dimensionality and conserva-
tion laws [6–16].
Another key issue concerns the spreading of correlations

out of equilibrium, and, in particular, the “light-cone” effect
after global quantum quenches. The most commonly
studied protocol in this context is to prepare the system
in the ground state of a given Hamiltonian, and to then
suddenly change a system parameter such as a magnetic
field or interaction strength. At subsequent times the
spreading of correlations can then be analyzed by consid-
ering the time dependence of two-point functions of local
operators separated by a fixed distance. As shown by Lieb
and Robinson [17,18], the velocity of information transfer
in quantum systems is bounded. This gives rise to a causal
structure in commutators of local operators at different
times, although Schrödinger’s equation, unlike relativistic
theories, has no built-in speed limit. Recently, the Lieb-
Robinson bounds have been refined [19–21] and extended
to mixed state dynamics in open quantum systems [21,22],
as well as topological quantum order [23].
A striking consequence of the Lieb-Robinson bound is

that the equal-time correlators after a quantum quench
feature a light-cone effect [23], which is most pronounced
for quenches to conformal field theories from initial
density matrices with a finite correlation length [24]:
connected correlations are initially absent, but exhibit a
marked increase after a time t0 ¼ x=2v. This observation
is explained by noting [25,26] that entangled pairs of
quasiparticles initially located halfway between the two
points of measurement propagate with the speed of light v

and, hence, induce correlations after a time t0. These
predictions have been verified numerically in several
systems, see, e.g., [27–32]. Very recently light-cone
effects after quantum quenches have been observed in
systems of ultracold atomic gases [33,34] and trapped ions
[35,36]. The experimental work raises the poignant
theoretical issue of which velocity underlies the observed
light-cone effect in nonrelativistic systems at finite energy
densities. Here there is no unique velocity of light, and
quasiparticles in interacting systems will generally have
finite lifetimes depending on the details of the initial
density matrix.
In order to shed some light on this issue, we have carried

out a systematic study of the spreading of correlations in the
spin-1=2 Heisenberg XXZ chain, a key paradigm among
interacting many-body quantum systems in one spatial
dimension. We fix the final (quenched) Hamiltonian and
vary the initial conditions over a large range of parameters.
Moreover, we do not only consider initial pure states [29]
but also prepare the system in thermal initial states as
illustrated in Fig. 1(a). The latter is of significant interest in
view of experimental realizations. Apart from a recent
numerical study for local quenches [37], the spreading
of signals in quenches from thermal states is basically
unexplored.
Our numerical simulations are based on a quench

extension of a recently proposed algorithm utilizing an
optimized wave function ensemble called Minimally
Entangled Typical Thermal States (METTS) [38,39] imple-
mented within the matrix product state (MPS) framework.
We come back to the description of the algorithm and a
discussion of its performance towards the end of this Letter.
Results.—In the following we consider quenches to the

spin-1=2 Heisenberg XXZ chain with anisotropy Δ,
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HðΔÞ ¼ J
XL−1
i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1 þ ΔSziS

z
iþ1Þ: ð1Þ

Initially, the system is prepared in a Gibbs state corre-
sponding to an XXZ Hamiltonian with anisotropy Δi at a
temperature T, i.e., ρðt ¼ 0Þ ¼ Z−1

β exp½−βHðΔiÞ� with
β ¼ 1=ðkBTÞ, where Zβ ¼ Tr exp½−βHðΔiÞ� (we set
kB ¼ 1). The anisotropy is then quenched at time t ¼ 0þ
from Δi to 0 ≤ Δf ≤ 1, as depicted in Fig. 1(a), and the
system subsequently evolves unitarily with Hamiltonian
HðΔfÞ [40]. In order to probe the spreading of correlations
we consider the longitudinal spin correlation functions
Szðj;tÞ¼hSzL=2ðtÞSzjðtÞi−hSzL=2ðtÞihSzjðtÞi centered around
the middle of the chain. Results for Szðj; tÞ are most easily
visualized in space-time plots, and typical results are shown
in Fig. 2. The most striking feature observed in these plots
is the light-cone effect: at a given separation j connected
correlations Szðj; tÞ arise fairly suddenly at a time that
scales linearly with j.
These results demonstrate that the light-cone effect

persists for mixed initial states, although the visibility of

the signal is diminished with increasing temperature (until
it vanished completely at β ¼ 0, since the initial density
matrix is trivial and stationary). Comparing the time
evolution of the correlation functions for different initial
temperatures, we see (cf. Figs. 2 and 3) that the signal front
is delayed when the temperature of the initial state is
increased, signaling that the spreading slows down. We
further observe that the spreading velocity is sensitive to the
strength of the quench, i.e., the value of the initial
interaction. At this point we should note that this finding
is unexpected. Based on our current understanding of
quenches to CFTs or of Lieb-Robinson bounds, there
are no predictions available which support spreading
velocities depending on the initial state.
Having established the result that the spreading velocity

depends both on the initial density matrices and the final
Hamiltonian, an obvious question is which properties of
ρðt ¼ 0Þ are relevant in this context. In order to quantify
this aspect we define the precise location of the light cone
as the first inflection point of the signal front observed in Sz

(also Ref. [29]). This allows us to extract a spreading
velocity vs by performing a linear fit to the largest
accessible time, where expected finite-distance effects
[41] are small.
Our main result, shown in Fig. 4, is that the spreading

velocity is mainly determined by the final energy density
ef ¼ Tr½HðΔfÞρðt ¼ 0Þ�=L. Plotting the measured veloc-
ities against ef leads to a remarkable data collapse for a
variety of quenches from thermal as well as pure initial
states for various Δi. This holds in spite of the fact that the
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FIG. 2 (color online). Space-time plot of the Sz correlation
functions for the quench from Δi ¼ 4 to Δf ¼ cosðπ=4Þ. The
upper panel shows ground state data whereas the lower panel
shows data from a thermal density matrix at T=J ¼ 1. This
illustrates that the light-cone effect in this observable persists also
at finite temperatures.

(a) (b)

FIG. 1 (color online). (a) Quench protocol: The system is
initially prepared in either the ground state of some Hamiltonian
HðΔiÞ or in a thermal state ρ ¼ Z−1

β exp½−βHðΔiÞ� with temper-
ature T. At time 0, the anisotropy is quenched toΔf and we let the
system evolve in time for various initial values of Δi and T.
(b) Outline of the numerical procedure: The METTS projection
loop generates an ensemble of wave function for some initial Δi
and temperature T. Each realization is evolved in time and
expectation values are obtained by averaging over the ensemble.
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FIG. 3 (color online). (a) Extracted inflection points versus
distance for different initial temperatures for the quench from
Δ ¼ 4 to cosðπ=4Þ. The straight lines correspond to the velocities
extracted from the GGE, where only the offset of the time axis has
been fitted. The orange dashed line denotes the ground state
Bethe ansatz velocity at Δf. (b) Rescaled averaged spin corre-
lation functions for the quench from Δ ¼ 4 to cosðπ=4Þ for
T=J ¼ 1 and the ground state (dashed line) and different
distances j ¼ 3, 5, 7, and 9. We omit the error bars for clarity
of the figure. The time axis is relative to the first inflection point
of the correlation functions for j ¼ 3. One can see that the signal
is delayed as the initial temperature is increased.

PRL 113, 187203 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 OCTOBER 2014

187203-2



system is integrable and thus its dynamics is constrained by
an infinite set of conserved quantities. As we will show in
the following, the observed velocities can be explained
quantitatively by considering excitations in an appropri-
ately defined generalized Gibbs ensemble.
Focusing on the quenches to Δf ¼ 1=2 as well as

cosðπ=4Þ ≈ 0.707 [42], we observe that the spreading
velocity vs decreases significantly as the final energy
density is increased by increasing T or altering Δi. The
numerical data suggest that vs approaches a nontrivial
velocity in the infinite-temperature limit that depends on
Δf. In fact, this velocity can be obtained from Bethe ansatz
(see discussion below) and is shown for the series Δf ¼
cosðπ=nÞ in the inset of Fig. 4. For very weak quenches,
where only the low-energy [relative to the ground state of
HðΔfÞ] degrees of freedom become populated, one expects
that the spreading velocity is given by the maximal mode
velocity vΔ ¼ π½ð1 − Δ2Þ=ð2 arccosΔÞ�−1=2. In fact, the
spreading velocity extrapolates to vΔf

, when the final
energy approaches the ground state energy of HðΔfÞ.
For the noninteracting case Δf ¼ 0 which reduces essen-
tially to free fermions, we find that the spreading velocity
for all initial conditions is compatible with the maximal
mode velocity, v0 ¼ 2. This is consistent with results we
obtained for quenches to the critical point of a one-
dimensional Ising model in a transverse field, which is

essentially also a free theory, where also no significant
dependence of the spreading velocity on the initial con-
ditions was observed.
We now provide a theoretical explanation of our striking

numerical observations.
Excitations in a generalized Gibbs ensemble.—A recent

work [43] proposed that correlation functions of local
operators after a quench to an integrable model, prepared
in a pure state jΨi, are given by

lim
L→∞

hOðtÞi ¼ lim
L→∞

�hΨjOðtÞjΦsi
2hΨjΦsi

þ Φs↔Ψ

�
: ð2Þ

Here, jΦis is a simultaneous eigenstate of the postquench
Hamiltonian and all local, higher conservation laws In,
such that

in ≡ lim
L→∞

1

L
Tr½ρðt ¼ 0ÞIn� ¼ lim

L→∞

1

L
hΦsjInjΦsi
hΦsjΦsi

: ð3Þ

In the case of interest here we have OðtÞ ¼ SzL=2ðtÞSzjðtÞ.
Importantly, the state jΦsi can be constructed by means of a
generalized thermodynamic Bethe ansatz (gTBA) [44,45].
The stationary state itself is expected to be described by an
appropriate GGE involving the known ultralocal [46] and
quasilocal [47] conservation laws, and possibly others
[48–52].
It was argued in Ref. [43] that states obtained by making

microscopic changes to jΦsi are most important to describe
the dynamics at (sufficiently) late times. This is motivated
by employing a Lehmann representation in terms of
energy eigenstates HðΔfÞjni ¼ Enjni, hΨjOðtÞjΦsi ¼P

nhΨjnihnjOjΦsi exp½−iðEn − EΦs
Þt�, and noting that at

sufficiently late times only states with ðEn − EΦs
Þ=J ¼

Oð1Þ are likely to contribute due to the otherwise rapidly
oscillating phase. It is then tempting to conjecture that
spreading of correlations occurs through these “excited
states” (which by constructed can have either positive or
negative energies relative to the representative state), and
the light-cone effect propagates with the maximum group
velocity that occurs amongst them. The method for
calculating such excited state velocities is depicted sche-
matically in Fig. 5, and details of the calculations are
provided in the Supplemental Material [53]. The basic idea
is to use TBA methods to determine the macrostate
minimizing the generalized Gibbs free energy. This is
characterized by appropriate particle-hole distribution func-
tions ρp;hj ðxÞ for elementary excitations labeled by the
index j (x parametrizes the respective momenta). The
corresponding “microcanonical” description [43,57,58] is
based on the particular simultaneous eigenstate jΦsi of the
Hamiltonian and the higher conservation laws, character-
ized by the set fρp;hj ðxÞg in the thermodynamic limit. One
then considers small changes of this microstate, and
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FIG. 4 (color online). Spreading velocity vs extracted from the
spin correlation function Sz as a function of the final energy ef
density for Δf ¼ 1=2 and cos π=4. The symbols denote numeri-
cal results obtained from either thermal or pure initial states with
different Δi. The blue and black solid lines denote the spreading
velocities from TBA using only the energy density whereas the
red line shows the results for the quench from Δi ¼ 10 to 0.5
using also the first conserved quantity. The corresponding
velocities for the quench from Δi ¼ 1.5 lie on top of the black
line; i.e., the GGE effects are smaller than the linewidth. The
rightmost symbols denote vΔf

at the energy density of the ground
state whereas the right most ones denote v1;max. The inset shows
the velocity at β ¼ 0, v1;max, extracted from the thermodynamic
Bethe ansatz for Δ ¼ cosðπ=nÞ.
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determines the resulting Oð1Þ (i.e., nonextensive) changes
in energy and momentum. These can be described in terms
of additive “elementary excitations” relative to jΦsi.
Finally, one determines the dispersion relations and hence
the group velocities of these excitations. The most signifi-
cant qualitative features of the “GGE excitation spectrum”
obtained in this way are as follows. (i) There are several
types of infinitely long-lived elementary excitations.
(ii) Their number depends only on the anisotropy Δf

[59], but their dispersions are sensitive to the full set
fing of (conserved) expectation values. (iii) In practice, we
need to compute in numerically. Given that explicit
expressions for In become rapidly extremely complicated
[46], we retain only two conservation laws, namely, energy
and I3, which involves 4-spin interactions (I2 is odd under
time reversal and hence does not play a role for the
quenches considered here). This can be justified by noting
that the differences in the calculated maximal velocities
between a Gibbs ensemble and a GGE with one added
conservation law are small, and that the most local
conservation laws are most important for accurately
describing the properties of local operators [60]. (iv) In
the cases we have considered, the maximal propagation
velocity is found for the same type of excitation (“positive
parity 1 strings”[59]). The results for the maximal veloc-
ities obtained from this gTBA analysis are compared to our
numerical computations in the main panel of Fig. 4. The
agreement is clearly very good. Also, the inset if Fig. 4
shows the velocities for infinite temperatures (ef ¼ 0) for
Δf ¼ cosðπ=nÞ, where n is an integer, revealing a non-
trivial Δf dependence even in this limiting case.
Numerical method.—After having provided the physical

results we shortly review the numerical procedure
employed to simulate the mixed state dynamics. MPS
provide a powerful framework to study the real-time
dynamics of one-dimensional quantum systems.
Originally conceived for ground state calculations [61],
there exist various extensions to finite temperatures
[62–72]. Very recently, Refs. [38,39] introduced a stochas-
tic method in which the expectation value of a thermal
density matrix is replaced by an average over an ensemble

of wave functions fjϕiig, that (i) can be efficiently sampled
(importance sampling) using Markov chains and (ii) only
hosts the minimal (small) amount of entanglement required
at that temperature, thus allowing for an efficient repre-
sentation in terms of MPS and was therefore called
METTS.
We show that theMETTSmethod, thus far only applied to

static equilibrium problems, can be easily extended to study
real time evolution by realizing that the expectation value
of some real-time propagated operator ÂðtÞ can be written

as hÂðtÞiT ¼ 1=ZβTr expð−βHÞÂðtÞ ¼ hϕiðtÞjÂjϕiðtÞi;
where the last term denotes an average over the time-evolved
METTS ensemble [73]. We employ the numerical scheme
illustrated in Fig. 1(b) where we first generate an ensemble of
wave functions following Ref. [39]. In a second step each Φi
is evolved in time using the TEBD algorithm [61] and
hÂðtÞiT is evaluated. We average over a few hundred
METTS instances and are limited due to runaway phenom-
ena [74] to times of tJ ∼ 6–8. Because of the reachable time
scales we consider system sizes of up to 50 sites here, but
studying larger systems poses no particular problem by
itself. A detailed description of the numerical method used
here can be found in the Supplemental Material [53].
Compared to a complementary approach, where the von

Neumann equation for the full system density matrix is
integrated within an matrix product operator framework
[67], we find that the METTS approach is able to reach
significantly longer times, and we therefore believe that the
METTS approach is quite promising to study global
quenches at finite temperature. A full comparison of the
different approaches, however, is beyond the scope of
this Letter and will be addressed in a forthcoming
publication [75].
Conclusions.—We have analyzed the spreading of cor-

relations after quantum quenches in the spin-1=2
Heisenberg XXZ chain. Our initial density matrix describ-
ing the system was taken to be a Gibbs distribution at a
particular temperature and initial value of anisotropy Δi.
We observed a pronounced light-cone effect in the con-
nected longitudinal spin-spin correlation function. We
found that the propagation velocity v of the light-cone
depends not only on the final Hamiltonian, but also on the
initial density matrix. For the quenches we considered the
observed values of v are well characterized by the expect-
ation value of the final Hamiltonian in the initial state.
These findings were found to be in accord with expectation
based on properties of excitations in an appropriately
defined generalized Gibbs ensemble. We also have shown
that one can apply the METTS framework to study
dynamical properties using MPS. Although the method
also exhibits the typical runaway behavior, the lack of
ancillary degrees of freedom or enlarged local Hilbert
spaces reduces the complexity of the simulations and a
direct comparison to other methods will be provided in a
separate publication [75].

FIG. 5 (color online). Scheme for the extraction of the veloc-
ities from the GGE. See text for details.
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Our work raises a number of interesting issues. First, we
expect that a full characterization of v will involve not only
the final energy density, but the densities of all final higher
conservation laws as well. In fact, we observe that the
effects of higher conserved quantities are much more
pronounced for negative Δf and this point is under
investigation. Second, our work raises the question,
whether horizon effects related to slower excitations can
become visible for particular initial density matrices (in the
case of local quenches this is indeed the case [76]). Finally,
our work suggests that light-cone propagation in generic
nonintegrable models ought to be rather nontrivial and
warrants detailed investigation.
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